ﻻ يوجد ملخص باللغة العربية
In the present work it is studied the fermionic van Hemmen model for the spin glass (SG) with a transverse magnetic field $Gamma$. In this model, the spin operators are written as a bilinear combination of fermionic operators, which allows the analysis of the interplay between charge and spin fluctuations in the presence of a quantum spin flipping mechanism given by $Gamma$. The problem is expressed in the fermionic path integral formalism. As results, magnetic phase diagrams of temperature versus the ferromagnetic interaction are obtained for several values of chemical potential $mu$ and $Gamma$. The $Gamma$ field suppresses the magnetic orders. The increase of $mu$ alters the average occupation per site that affects the magnetic phases. For instance, the SG and the mixed SG+ferromagnetic phases are also suppressed by $mu$. In addition, $mu$ can change the nature of the phase boundaries introducing a first order transition.
We investigate the inverse freezing in the fermionic Ising spin-glass (FISG) model in a transverse field $Gamma$. The grand canonical potential is calculated in the static approximation, replica symmetry and one-step replica symmetry breaking Parisi
We study magnetic properties of the 3-state spin ($S_{i}=0$ and $pm 1$) spin glass (SG) van Hemmen model with ferromagnetic interaction $J_0$ under a random field (RF). The RF follows a bimodal distribution The combined effect of the crystal field $D
The stability of spin-glass (SG) phase is analyzed in detail for a fermionic Ising SG (FISG) model in the presence of a magnetic transverse field $Gamma$. The fermionic path integral formalism, replica method and static approach have been used to obt
We consider a Kuramoto model of coupled oscillators that includes quenched random interactions of the type used by van Hemmen in his model of spin glasses. The phase diagram is obtained analytically for the case of zero noise and a Lorentzian distrib
A theory is proposed to describe the competition among antiferromagnetism (AF), spin glass (SG) and Kondo effect. The model describes two Kondo sublattices with an intrasite Kondo interaction strength $J_{K}$ and a random Gaussian interlattice intera