ﻻ يوجد ملخص باللغة العربية
We explore the effects of the deflagration to detonation transition (DDT) density on the production of Ni-56 in thermonuclear supernova explosions (type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear supernovae with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of Ni-56 masses to those inferred from observations. Within this framework, we utilize a more realistic simmered white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of Ni-56 and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range 1-3x10^7 g/cc. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 +/- 0.004 solar masses for a 1 solar metallicity increase evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 +/- 0.004 solar mass decrease in the Ni-56 yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.
We present a study exploring a systematic effect on the brightness of type Ia supernovae using numerical models that assume the single-degenerate paradigm. Our investigation varied the central density of the progenitor white dwarf at flame ignition,
Type Ia supernovae are bright stellar explosions thought to occur when a thermonuclear runaway consumes roughly a solar mass of degenerate stellar material. These events produce and disseminate iron-peak elements, and properties of their light curves
We present a theoretical framework for formal study of systematic effects in Supernovae Type Ia (SN Ia) that utilizes 2-d simulations to implement a form of the deflagration-detonation transition (DDT) explosion scenario. The framework is developed f
It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing
Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite the highly successful use of these events in this capacity, many fundament