Anisotropic Total Variation Regularized L^1-Approximation and Denoising/Deblurring of 2D Bar Codes


الملخص بالإنكليزية

We consider variations of the Rudin-Osher-Fatemi functional which are particularly well-suited to denoising and deblurring of 2D bar codes. These functionals consist of an anisotropic total variation favoring rectangles and a fidelity term which measure the L^1 distance to the signal, both with and without the presence of a deconvolution operator. Based upon the existence of a certain associated vector field, we find necessary and sufficient conditions for a function to be a minimizer. We apply these results to 2D bar codes to find explicit regimes ---in terms of the fidelity parameter and smallest length scale of the bar codes--- for which a perfect bar code is recoverable via minimization of the functionals. Via a discretization reformulated as a linear program, we perform numerical experiments for all functionals demonstrating their denoising and deblurring capabilities.

تحميل البحث