ﻻ يوجد ملخص باللغة العربية
As known, physical circuits, e.g. integrated circuits or power system, work in a distributed manner, but these circuits could not be easily simulated in a distributed way. This is mainly because that the dynamical system of physical circuits is nonlinear and the linearized system of physical circuits is nonsymmetrical. This paper proposes a simple and natural strategy to mimic the distributed behavior of the physical circuit by mimicking the distributed behavior of the internal wires inside this circuit. Mimic Transmission Method (MTM) is a new distributed algorithm to solve the nonlinear ordinary differential equations extracted from physical circuits. It maps the transmission delay of interconnects between subcircuits to the communication delay of digital data link between processors. MTM is a black-box algorithm. By mimicking the transmission lines, MTM seals the nonlinear dynamical system within the subcircuit. As the result, we do not need to pay attention on how to solve the nonlinear dynamic system or nonsymmetrical linear system in parallel. MTM is a global direct algorithm, and it does only one distributed computation at each time window to obtain accurate result, so unconvergence issues do not need to be worried about.
In this paper, we propose a new parallel algorithm which could work naturally on the parallel computer with arbitrary number of processors. This algorithm is named Virtual Transmission Method (VTM). Its physical backgroud is the lossless transmission
Waveform Relaxation method (WR) is a beautiful algorithm to solve Ordinary Differential Equations (ODEs). However, because of its poor convergence capability, it was rarely used. In this paper, we propose a new distributed algorithm, named Waveform T
According to the pay-per-use model adopted in clouds, the more the resources consumed by an application running in a cloud computing environment, the greater the amount of money the owner of the corresponding application will be charged. Therefore, a
A strong photon-photon nonlinear interaction is a necessary condition for photon blockade. Moreover, this nonlinearity can also result a bistable behavior in the cavity field. We analyze the relation between detecting field and photon blockade in a s
A number of recent papers -- e.g. Brandt et al. (STOC 2016), Chang et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC 2017), and Chang & Pettie (FOCS 2017) -- have advanced our understanding of one of the most fundamental questions in