ترغب بنشر مسار تعليمي؟ اضغط هنا

Planar maps and continued fractions

175   0   0.0 ( 0 )
 نشر من قبل J\\'er\\'emie Bouttier
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an unexpected connection between two map enumeration problems. The first one consists in counting planar maps with a boundary of prescribed length. The second one consists in counting planar maps with two points at a prescribed distance. We show that, in the general class of maps with controlled face degrees, the solution for both problems is actually encoded into the same quantity, respectively via its power series expansion and its continued fraction expansion. We then use known techniques for tackling the first problem in order to solve the second. This novel viewpoint provides a constructive approach for computing the so-called distance-dependent two-point function of general planar maps. We prove and extend some previously predicted exact formulas, which we identify in terms of particular Schur functions.



قيم البحث

اقرأ أيضاً

We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pa scal identitiy for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
Sulanke and Xin developed a continued fraction method that applies to evaluate Hankel determinants corresponding to quadratic generating functions. We use their method to give short proofs of Ciglers Hankel determinant conjectures, which were proved recently by Chang-Hu-Zhang using direct determinant computation. We find that shifted periodic continued fractions arise in our computation. We also discover and prove some new nice Hankel determinants relating to lattice paths with step set ${(1,1),(q,0), (ell-1,-1)}$ for integer parameters $m,q,ell$. Again shifted periodic continued fractions appear.
120 - Guo-Niu Han 2019
The Euler numbers occur in the Taylor expansion of $tan(x)+sec(x)$. Since Stieltjes, continued fractions and Hankel determinants of the even Euler numbers, on the one hand, of the odd Euler numbers, on the other hand, have been widely studied separat ely. However, no Hankel determinants of the (mixed) Euler numbers have been obtained and explicitly calculated. The reason for that is that some Hankel determinants of the Euler numbers are null. This implies that the Jacobi continued fraction of the Euler numbers does not exist. In the present paper, this obstacle is bypassed by using the Hankel continued fraction, instead of the $J$-fraction. Consequently, an explicit formula for the Hankel determinants of the Euler numbers is being derived, as well as a full list of Hankel continued fractions and Hankel determinants involving Euler numbers. Finally, a new $q$-analog of the Euler numbers $E_n(q)$ based on our continued fraction is proposed. We obtain an explicit formula for $E_n(-1)$ and prove a conjecture by R. J. Mathar on these numbers.
We reformulate several known results about continued fractions in combinatorial terms. Among them the theorem of Conway and Coxeter and that of Series, both relating continued fractions and triangulations. More general polygon dissections appear when extending these theorems for elements of the modular group $PSL(2,mathbb{Z})$. These polygon dissections are interpreted as walks in the Farey tessellation. The combinatorial model of continued fractions can be further developed to obtain a canonical presentation of elements of $PSL(2,mathbb{Z})$.
We compare two families of continued fractions algorithms, the symmetrized Rosen algorithm and the Veech algorithm. Each of these algorithms expands real numbers in terms of certain algebraic integers. We give explicit models of the natural extension of the maps associated with these algorithms; prove that these natural extensions are in fact conjugate to the first return map of the geodesic flow on a related surface; and, deduce that, up to a conjugacy, almost every real number has an infinite number of common approximants for both algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا