ترغب بنشر مسار تعليمي؟ اضغط هنا

QND measurement of a superconducting qubit in the weakly projective regime

265   0   0.0 ( 0 )
 نشر من قبل Thomas Picot
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum state detectors based on switching of hysteretic Josephson junctions biased close to their critical current are simple to use but have strong back-action. We show that the back-action of a DC-switching detector can be considerably reduced by limiting the switching voltage and using a fast cryogenic amplifier, such that a single readout can be completed within 25 ns at a repetition rate of 1 MHz without loss of contrast. Based on a sequence of two successive readouts we show that the measurement has a clear quantum non-demolition character, with a QND fidelity of 75 %.



قيم البحث

اقرأ أيضاً

We have observed signatures of resonant tunneling in an Al three-junction qubit, inductively coupled to a Nb LC tank circuit. The resonant properties of the tank oscillator are sensitive to the effective susceptibility (or inductance) of the qubit, w hich changes drastically as its flux states pass through degeneracy. The tunneling amplitude is estimated from the data. We find good agreement with the theoretical predictions in the regime of their validity.
We study the response of a magnetic-field-driven superconducting qubit strongly coupled to a superconducting coplanar waveguide resonator. We observed a strong amplification/damping of a probing signal at different resonance points corresponding to a one and two-photon emission/absorption. The sign of the detuning between the qubit frequency and the probe determines whether amplification or damping is observed. The larger blue detuned driving leads to two-photon lasing while the larger red detuning cools the resonator. Our experimental results are in good agreement with the theoretical model of qubit lasing and cooling at the Rabi frequency.
80 - A. Lupascu , S. Saito , T. Picot 2006
In quantum mechanics, the process of measurement is a subtle interplay between extraction of information and disturbance of the state of the quantum system. A quantum non-demolition (QND) measurement minimizes this disturbance by using a particular s ystem - detector interaction which preserves the eigenstates of a suitable operator of the quantum system. This leads to an ideal projective measurement. We present experiments in which we perform two consecutive measurements on a quantum two -level system, a superconducting flux qubit, by probing the hysteretic behaviour of a coupled nonlinear resonator. The large correlation between the results of the two measurements demonstrates the QND nature of the readout method. The fact that a QND measurement is possible for superconducting qubits strengthens the notion that these fabricated mesoscopic systems are to be regarded as fundamental quantum objects. Our results are also relevant for quantum information processing, where projective measurements are used for protocols like state preparation and error correction.
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74% which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.
285 - J. Johansson , S. Saito , T. Meno 2005
We have observed the coherent exchange of a single energy quantum between a flux qubit and a superconducting LC circuit acting as a quantum harmonic oscillator. The exchange of an energy quantum is known as the vacuum Rabi oscillations: the qubit is oscillating between the excited state and the ground state and the oscillator between the vacuum state and the first excited state. We have also obtained evidence of level quantization of the LC circuit by observing the change in the oscillation frequency when the LC circuit was not initially in the vacuum state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا