ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational Constraints for Thermohaline Mixing

118   0   0.0 ( 0 )
 نشر من قبل George Angelou
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a brief review of thermohaline physics and why it is a candidate extra mixing mechanism during the red giant branch (RGB). We discuss how thermohaline mixing (also called $delta$ $mu$ mixing) during the RGB due to helium-3 burning, is more complicated than the operation of thermohaline mixing in other stellar contexts (such as following accretion from a binary companion). We try to use observations of carbon depletion in globular clusters to help constrain the formalism and the diffusion coefficient or mixing velocity that should be used in stellar models. We are able to match the spread of carbon depletion for metal poor field giants but are unable to do so for cluster giants, which may show evidence of mixing prior to even the first dredge-up event.



قيم البحث

اقرأ أيضاً

Extremely metal-poor (EMP) stars are an integral piece in the puzzle that is the early Universe, and although anomolous subclasses of EMP stars such as carbon-enhanced metal-poor (CEMP) stars are well-studied, they make up less than half of all EMP s tars with [Fe/H] $sim -3.0$. The amount of carbon depletion occurring on the red giant branch (carbon offset) is used to determine the evolutionary status of EMP stars, and this offset will differ between CEMP and normal EMP stars. The depletion mechanism employed in stellar models (from which carbon offfsets are derived) is very important, however the only widely available carbon offsets in the literature are derived from stellar models using a thermohaline mixing mechanism that cannot simultaneously match carbon and lithium abundances to observations for a single diffusion coeffcient. Our stellar evolution models utilise a modified thermohaline mixing model that can match carbon and lithium in the metal-poor globular cluster NGC 6397. We compare our models to the bulk of the EMP star sample at [Fe/H] $= -3$ and show that our modified models follow the trend of the observations and deplete less carbon compared to the standard thermohaline mixing theory. We conclude that stellar models that employ the standard thermohaline mixing formalism overestimate carbon offsets and hence CEMP star frequencies, particularly at metallicities where carbon-normal stars dominate the EMP star population.
Thermohaline mixing is a favoured mechanism for the so-called extra mixing on the red giant branch of low-mass stars. The mixing is triggered by the molecular weight inversion created above the hydrogen shell during first dredge-up when helium-3 burn s via 3He(3He,2p)4He. The standard 1D diffusive mixing scheme cannot simultaneously match carbon and lithium abundances to NGC 6397 red giants. We investigate two modifications to the standard scheme: (1) an advective two stream mixing algorithm, and (2) modifications to the standard 1D thermohaline mixing formalism. We cannot simultaneously match carbon and lithium abundances using our two stream mixing approach. However we develop a modified diffusive scheme with an explicit temperature dependence that can simultaneously fit carbon and lithium abundances to NGC 6397 stars. Our modified diffusive scheme induces mixing that is faster than the standard theory predicts in the hotter part of the thermohaline region and mixing that is slower in the cooler part. Our results infer that the extra mixing mechanism needs further investigation and more observations are required, particularly for stars in different clusters spanning a range in metallicity.
It is now widely accepted that globular cluster red giant branch stars owe their strange abundance patterns to a combination of pollution from progenitor stars and in situ extra mixing. In this hybrid theory a first generation of stars imprint abunda nce patterns into the gas from which a second generation forms. The hybrid theory suggests that extra mixing is operating in both populations and we use the variation of [C/Fe] with luminosity to examine how efficient this mixing is. We investigate the observed red giant branches of M3, M13, M92, M15 and NGC 5466 as a means to test a theory of thermohaline mixing. The second parameter pair M3 and M13 are of intermediate metallicity and our models are able to account for the evolution of carbon along the RGB in both clusters. Although, in order to fit the most carbon-depleted main-sequence stars in M13 we require a model whose initial [C/Fe] abundance leads to a carbon abundance lower than is observed. Furthermore our results suggest that stars in M13 formed with some primary nitrogen (higher C+N+O than stars in M3). In the metal-poor regime only NGC 5466 can be tentatively explained by thermohaline mixing operating in multiple populations. We find thermohaline mixing unable to model the depletion of [C/Fe] with magnitude in M92 and M15. It appears as if extra mixing is occurring before the luminosity function bump in these clusters. To reconcile the data with the models would require first dredge-up to be deeper than found in extant models.
We revise a magnetic buoyancy model that has recently been proposed as a mechanism for extra mixing in the radiative zones of low-mass red giants. The most important revision is our accounting of the heat exchange between rising magnetic flux rings a nd their surrounding medium. This increases the buoyant rising time by five orders of magnitude, therefore the number of magnetic flux rings participating in the mixing has to be increased correspondingly. On the other hand, our revised model takes advantage of the fact that the mean molecular weight of the rings formed in the vicinity of the hydrogen burning shell has been reduced by 3He burning. This increases their thermohaline buoyancy (hence, decreases the total ring number) considerably, making it equivalent to the pure magnetic buoyancy produced by a frozen-in toroidal field with B_phi ~ 10 MG. We emphasize that some toroidal field is still needed for the rings to remain cohesive while rising. Besides, this field prevents the horizontal turbulent diffusion from eroding the mu contrast between the rings and their surrounding medium. We propose that the necessary toroidal magnetic field is generated by differential rotation of the radiative zone, that stretches a pre-existing poloidal field around the rotation axis, and that magnetic flux rings are formed as a result of its buoyancy-related instability.
We present post process neutron capture computations for Asymptotic Giant Branch stars of 1.5 to 3 Mo and metallicities -1.3 to 0.1. The reference stellar models are computed with the FRANEC code, using the Schwarzschilds criterion for convection. Mo tivations for this choice are outlined. We assume that MHD processes induce the penetration of protons below the convective boundary, when the third dredge up occurs. There, the 13C(alpha,n)16O neutron source can subsequently operate, merging its effects with those of the 22Ne(alpha,n)25Mg reaction, activated at the temperature peaks characterizing AGB stages. This work has three main scopes. i) We provide a grid of abundance yields, as produced through our MHD mixing scheme, uniformly sampled in mass and metallicity. From it, we deduce that the solar s process distribution, as well as the abundances in recent stellar populations, can be accounted for, without the need of the extra primary like contributions suggested in the past. ii) We formulate analytical expressions for the mass of the 13C pockets generated, in order to allow easy verification of our findings. iii) We compare our results with observations of evolved stars and with isotopic ratios in presolar SiC grains, also noticing how some flux tubes should survive turbulent disruption, carrying C rich materials into the winds even when the envelope is O rich. This wind phase is approximated through the G component of AGB s processing. We conclude that MHD induced mixing is adequate to drive slow neutron capture phenomena accounting for observations. Our prescriptions should permit its inclusion into current stellar evolutionary codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا