ترغب بنشر مسار تعليمي؟ اضغط هنا

Birational invariance of the $S$-fundamental group scheme

134   0   0.0 ( 0 )
 نشر من قبل Amit Hogadi
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X$ and $Y$ be nonsingular projective varieties over an algebraically closed field $k$ of positive characteristic. If $X$ and $Y$ are birational, we show their $S$-fundamental group schemes are isomorphic.



قيم البحث

اقرأ أيضاً

262 - Lie Fu , Yeping Zhang 2020
Bershadsky, Cecotti, Ooguri and Vafa constructed a real valued invariant for Calabi-Yau manifolds, which is now called the BCOV invariant. The BCOV invariant is conjecturally related to the Gromov-Witten theory via mirror symmetry. Based upon previou s work of the second author, we prove the conjecture that birational Calabi-Yau manifolds have the same BCOV invariant. We also extend the construction of the BCOV invariant to Calabi-Yau varieties with Kawamata log terminal singularities, and prove its birational invariance for Calabi-Yau varieties with canonical singularities. We provide an interpretation of our construction using the theory of motivic integration.
Let k be a number field, and let S be a finite set of k-rational points of P^1. We relate the Deligne-Goncharov contruction of the motivic fundamental group of X:=P^1_k- S to the Tannaka group scheme of the category of mixed Tate motives over X.
We propose a perturbation method for determining the (largest) group of invariance of a toric ideal defined in Aoki and Takemura [2008a]. In the perturbation method, we investigate how a generic element in the row space of the configuration defining a toric ideal is mapped by a permutation of the indeterminates. Compared to the proof in Aoki and Takemura [2008a] which was based on stabilizers of a subset of indeterminates, the perturbation method gives a much simpler proof of the group of invariance. In particular, we determine the group of invariance for a general hierarchical model of contingency tables in statistics, under the assumption that the numbers of the levels of the factors are generic. We prove that it is a wreath product indexed by a poset related to the intersection poset of the maximal interaction effects of the model.
Relying on a notion of numerical effectiveness for Higgs bundles, we show that the category of numerically flat Higgs vector bundles on a smooth projective variety $X$ is a Tannakian category. We introduce the associated group scheme, that we call th e Higgs fundamental group scheme of $X$, and show that its properties are related to a conjecture about the vanishing of the Chern classes of numerically flat Higgs vector bundles.
Given a smooth and separated K(pi,1) variety X over a field k, we associate a cycle class in etale cohomology with compact supports to any continuous section of the natural map from the arithmetic fundamental group of X to the absolute Galois group o f k. We discuss the algebraicity of this class in the case of curves over p-adic fields, and deduce in particular a new proof of Stixs theorem according to which the index of a curve X over a p-adic field k must be a power of p as soon as the natural map from the arithmetic fundamental group of X to the absolute Galois group of k admits a section. Finally, an etale adaptation of Beilinsons geometrization of the pronilpotent completion of the topological fundamental group allows us to lift this cycle class in suitable cohomology groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا