ﻻ يوجد ملخص باللغة العربية
We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as non-interacting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hy
We show that complex (scale-free) network topologies naturally emerge from hyperbolic metric spaces. Hyperbolic geometry facilitates maximally efficient greedy forwarding in these networks. Greedy forwarding is topology-oblivious. Nevertheless, greed
Routing information through networks is a universal phenomenon in both natural and manmade complex systems. When each node has full knowledge of the global network connectivity, finding short communication paths is merely a matter of distributed comp
A condensation transition was predicted for growing technological networks evolving by preferential attachment and competing quality of their nodes, as described by the fitness model. When this condensation occurs a node acquires a finite fraction
From social interactions to the human brain, higher-order networks are key to describe the underlying network geometry and topology of many complex systems. While it is well known that network structure strongly affects its function, the role that ne