Population III star formation during the dark ages shifted from minihalos (~10^6 Msun) cooled via molecular hydrogen to more massive halos (~10^8 Msun) cooled via Ly-alpha as Lyman-Werner backgrounds progressively quenched molecular hydrogen cooling. Eventually, both modes of primordial star formation were suppressed by the chemical enrichment of the IGM. We present a comprehensive model for following the modes of Population III star formation that is based on a combination of analytical calculations and cosmological simulations. We characterize the properties of the transition from metal-free star formation to the first Population II clusters for an average region of the Universe and for the progenitors of the Milky Way. Finally, we highlight the possibility of observing the explosion of Population III stars within Ly-alpha cooled halos at redshift z~6 in future deep all sky surveys such as LSST.