ترغب بنشر مسار تعليمي؟ اضغط هنا

New HST WFC3/UVIS observations augment the stellar-population complexity of omega Centauri

100   0   0.0 ( 0 )
 نشر من قبل Andrea Bellini
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bellini A.




اسأل ChatGPT حول البحث

We used archival multi-band Hubble Space Telescope observations obtained with the Wide-Field Camera 3 in the UV-optical channel to present new important observational findings on the color-magnitude diagram (CMD) of the Galactic globular cluster omega Centauri. The ultraviolet WFC3 data have been coupled with available WFC/ACS optical-band data. The new CMDs, obtained from the combination of colors coming from eight different bands, disclose an even more complex stellar population than previously identified. This paper discusses the detailed morphology of the CMDs.



قيم البحث

اقرأ أيضاً

96 - A. Bellini 2018
In this second installment of the series, we look at the internal kinematics of the multiple stellar populations of the globular cluster $omega$ Centauri in one of the parallel Hubble Space Telescope (HST) fields, located at about 3.5 half-light radi i from the center of the cluster. Thanks to the over 15-year-long baseline and the exquisite astrometric precision of the HST cameras, well-measured stars in our proper-motion catalog have errors as low as $sim 10 mu$as yr$^{-1}$, and the catalog itself extends to near the hydrogen-burning limit of the cluster. We show that second-generation (2G) stars are significantly more radially anisotropic than first-generation (1G) stars. The latter are instead consistent with an isotropic velocity distribution. In addition, 1G have excess systemic rotation in the plane of the sky with respect to 2G stars. We show that the six populations below the main-sequence (MS) knee identified in our first paper are associated to the five main population groups recently isolated on the upper MS in the core of cluster. Furthermore, we find both 1G and 2G stars in the field to be far from being in energy equipartition, with $eta_{rm 1G}=-0.007pm0.026$ for the former, and $eta_{rm 2G}=0.074pm0.029$ for the latter, where $eta$ is defined so that the velocity dispersion $sigma_mu$ scales with stellar mass as $sigma_mu propto m^{-eta}$. The kinematical differences reported here can help constrain the formation mechanisms for the multiple stellar populations in $omega$ Centauri and other globular clusters. We make our astro-photometric catalog publicly available.
In this paper we report a new estimate of the absolute proper motion (PM) of the globular cluster NGC 5139 ($omega$ Cen) as part of the HST large program GO-14118+14662. We analyzed a field 17 arcmin South-West of the center of $omega$ Cen and comput ed PMs with an epoch span of $sim$15.1 years. We employed 45 background galaxies to link our relative PMs to an absolute reference-frame system. The absolute PM of the cluster in our field is: $(mu_alpha cosdelta , mu_delta) = (-3.341 pm 0.028 , -6.557 pm 0.043)$ mas yr$^{-1}$. Upon correction for the effects of viewing perspective and the known cluster rotation, this implies that for the cluster center of mass $(mu_alpha cosdelta , mu_delta) = (-3.238 pm 0.028, -6.716 pm 0.043)$ mas yr$^{-1}$. This measurement is direct and independent, has the highest random and systematic accuracy to date, and will provide an external verification for the upcoming Gaia Data Release 2. It also differs from most reported PMs for $omega$ Cen in the literature by more than 5$sigma$, but consistency checks compared to other recent catalogs yield excellent agreement. We computed the corresponding Galactocentric velocity, calculated the implied orbit of $omega$ Cen in two different Galactic potentials, and compared these orbits to the orbits implied by one of the PM measurements available in the literature. We find a larger (by about 500 pc) perigalactic distance for $omega$ Cen with our new PM measurement, suggesting a larger survival expectancy for the cluster in the Galaxy.
78 - G.C. Myeong 2018
We use the SDSS-Gaia catalogue to search for substructure in the stellar halo. The sample comprises 62,133 halo stars with full phase space coordinates and extends out to heliocentric distances of $sim 10$ kpc. As actions are conserved under slow cha nges of the potential, they permit identification of groups of stars with a common accretion history. We devise a method to identify halo substructures based on their clustering in action space, using metallicity as a secondary check. This is validated against smooth models and numerical constructed stellar halos from the Aquarius simulations. We identify 21 substructures in the SDSS-Gaia catalogue, including 7 high significance, high energy and retrograde ones. We investigate whether the retrograde substructures may be material stripped off the atypical globular cluster $omega$~Centauri. Using a simple model of the accretion of the progenitor of the $omega$~Centauri, we tentatively argue for the possible association of up to 5 of our new substructures (labelled Rg1, Rg3, Rg4, Rg6 and Rg7) with this event. This sets a minimum mass of $5 times 10^8 M_odot$ for the progenitor, so as to bring $omega$~Centauri to its current location in action -- energy space. Our proposal can be tested by high resolution spectroscopy of the candidates to look for the unusual abundance patterns possessed by $omega$~Centauri stars.
In response to the proposed high helium content stars as an explanation for the double main sequence observed in Omega Centauri, we investigated the consequences of such stars elsewhere on the color-magnitude diagram. We concentrated on the horizonta l branch where the effects of high helium are expected to show themselves more clearly. In the process, we developed a procedure for comparing the mass loss suffered by differing stellar populations in a physically motivated manner. High helium stars in the numbers proposed seem absent from the horizontal branch of Omega Centauri unless their mass loss history is very different from that of the majority metal-poor stars. It is possible to generate a double main sequence with existing Omega Centauri stars via accretion of helium rich pollution consistent with the latest AGB ejecta theoretical yields, and such polluted stars are consistent with the observed HB morphology of Omega Centauri. Polluted models are consistent with observed merging of the main sequences as opposed to our models of helium rich stars. Using the (B-R)/(B+V+R) statistic, we find that the high helium bMS stars require an age difference compared to the rMS stars that is too great, whereas the pollution scenario stars have no such conflict for inferred Omega Centauri mass losses.
Optical, reflected light eclipse observations provide a direct probe of the exoplanet scattering properties, such as from aerosols. We present here the photometric, reflected light observations of WASP-43b using the HST WFC3/UVIS instrument with the F350LP filter (346-822nm) encompassing the entire optical band. This is the first reflected light, photometric eclipse using UVIS in scanning mode; as such we further detail our scanning extraction and analysis pipeline Arctor. Our HST WFC3/UVIS eclipse light curve for WASP-43 b derived a 3-{sigma} upper limit of 67 ppm on the eclipse depth, which implies that WASP-43b has a very dark dayside atmosphere. With our atmospheric modeling campaign, we compared our reflected light constraints with predictions from global circulation and cloud models, benchmarked with HST and Spitzer observations of WASP-43b. We infer that we do not detect clouds on the dayside within the pressure levels probed by HST WFC3/UVIS with the F350LP filter (P > 1 bar). This is consistent with the GCM predictions based on previous WASP-43b observations. Dayside emission spectroscopy results from WASP-43b with HST and Spitzer observations are likely to not be significantly affected by contributions from cloud particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا