ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Enveloping Algebras of Braided m-Lie Algebras

211   0   0.0 ( 0 )
 نشر من قبل Shouchuan Zhang
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Universal enveloping algebras of braided m-Lie algebras and PBW theorem are obtained by means of combinatorics on words.



قيم البحث

اقرأ أيضاً

We prove {rm (i)} Nichols algebra $mathfrak B(V)$ of vector space $V$ is finite-dimensional if and only if Nichols braided Lie algebra $mathfrak L(V)$ is finite-dimensional; {rm (ii)} If the rank of connected $V$ is $2$ and $mathfrak B(V)$ is an arit hmetic root system, then $mathfrak B(V) = F oplus mathfrak L(V);$ and {rm (iii)} if $Delta (mathfrak B(V))$ is an arithmetic root system and there does not exist any $m$-infinity element with $p_{uu} ot= 1$ for any $u in D(V)$, then $dim (mathfrak B(V) ) = infty$ if and only if there exists $V$, which is twisting equivalent to $V$, such that $ dim (mathfrak L^ - (V)) = infty.$ Furthermore we give an estimation of dimensions of Nichols Lie algebras and two examples of Lie algebras which do not have maximal solvable ideals.
It is shown that if $mathfrak B(V) $ is connected Nichols algebra of diagonal type with $dim V>1$, then $dim (mathfrak L^-(V)) = infty$ $($resp. $ dim (mathfrak L(V)) = infty $$)$ $($ resp. $ dim (mathfrak B(V)) = infty $$)$ if and only if $Delta(mat hfrak B(V)) $ is an arithmetic root system and the quantum numbers (i.e. the fixed parameters) of generalized Dynkin diagrams of $V$ are of finite order. Sufficient and necessary conditions for $m$-fold adjoint action in $mathfrak B(V)$ equal to zero, viz. $overline{l}_{x_{i}}^{m}[x_{j}]^ -=0$ for $x_i,~x_jin mathfrak B(V)$, are given.
Assume that $V$ is a braided vector space with diagonal type. It is shown that a monomial belongs to Nichols braided Lie algebra $mathfrak L(V)$ if and only if this monomial is connected. A basis of Nichols braided Lie algebra and dimension of Nichol s braided Lie algebra of finite Cartan type are obtained.
We establish the relationship among Nichols algebras, Nichols braided Lie algebras and Nichols Lie algebras. We prove two results: (i) Nichols algebra $mathfrak B(V)$ is finite-dimensional if and only if Nichols braided Lie algebra $mathfrak L(V)$ is finite-dimensional if there does not exist any $m$-infinity element in $mathfrak B(V)$; (ii) Nichols Lie algebra $mathfrak L^-(V)$ is infinite dimensional if $ D^-$ is infinite. We give the sufficient conditions for Nichols braided Lie algebra $mathfrak L(V)$ to be a homomorphic image of a braided Lie algebra generated by $V$ with defining relations.
We study universal enveloping Hopf algebras of Lie algebras in the category of weakly complete vector spaces over the real and complex field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا