ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of spin fluctuations near the Mott transition: a DMFT study

153   0   0.0 ( 0 )
 نشر من قبل Serge Florens
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dynamics of magnetic moments near the Mott metal-insulator transition is investigated by a combined slave-rotor and Dynamical Mean-Field Theory solution of the Hubbard model with additional fully-frustrated random Heisenberg couplings. In the paramagnetic Mott state, the spinon decomposition allows to generate a Sachdev-Ye spin liquid in place of the collection of independent local moments that typically occurs in the absence of magnetic correlations. Cooling down into the spin-liquid phase, the onset of deviations from pure Curie behavior in the spin susceptibility is found to be correlated to the temperature scale at which the Mott transition lines experience a marked bending. We also demonstrate a weakening of the effective exchange energy upon approaching the Mott boundary from the Heisenberg limit, due to quantum fluctuations associated to zero and doubly occupied sites.



قيم البحث

اقرأ أيضاً

We present a detailed analysis of the critical behavior close to the Mott-Anderson transition. Our findings are based on a combination of numerical and analytical results obtained within the framework of Typical-Medium Theory (TMT-DMFT) - the simples t extension of dynamical mean field theory (DMFT) capable of incorporating Anderson localization effects. By making use of previous scaling studies of Anderson impurity models close to the metal-insulator transition, we solve this problem analytically and reveal the dependence of the critical behavior on the particle-hole symmetry. Our main result is that, for sufficiently strong disorder, the Mott-Anderson transition is characterized by a precisely defined two-fluid behavior, in which only a fraction of the electrons undergo a site selective Mott localization; the rest become Anderson-localized quasiparticles.
Correlation-driven screening of disorder is studied within the typical-medium dynamical mean-field theory (TMT-DMFT) of the Mott-Anderson transition. In the strongly correlated regime, the site energies epsilon_R^i characterizing the effective disord er potential are strongly renormalized due to the phenomenon of Kondo pinning. This effect produces very strong screening when the interaction U is stronger then disorder W, but applies only to a fraction of the sites in the opposite limit (U<W).
We perform a comprehensive theoretical study of the pressure-induced evolution of the electronic structure, magnetic state, and phase stability of the late transition metal monoxides MnO, FeO, CoO, and NiO using a fully charge self-consistent DFT+dyn amical mean-field theory method. Our results reveal that the pressure-induced Mott insulator-to-metal phase transition in MnO-NiO is accompanied by a simultaneous collapse of local magnetic moments and lattice volume, implying a complex interplay between chemical bonding and electronic correlations. We compute the pressure-induced evolution of relative weights of the different valence states and spin-state configurations. Employing the concept of fluctuating valence in a correlated solid, we demonstrate that in MnO, FeO, and CoO a Mott insulator-metal transition and collapse of the local moments is accompanied by a sharp crossover of the spin-state and valence configurations. Our microscopic explanation of the magnetic collapse differs from the accepted picture and points out a remarkable dynamical coexistence (frustration) of the high-, intermediate-, and low-spin states. In particular, in MnO, the magnetic collapse is found to be driven by the appearance of the intermediate-spin state (IS), competing with the low-spin (LS) state; in FeO, we observe a conventional high-spin to low-spin (HS-LS) crossover. Most interestingly, in CoO, we obtain a remarkable (dynamical) coexistence of the HS and LS states, i.e., a HS-LS frustration, up to high pressure. Our results demonstrate the importance of quantum fluctuations of the valence and spin states for the understanding of quantum criticality of the Mott transitions.
Spectral properties of fcc-Ce have been calculated in frames of modern DFT+DMFT method with Hybridization expansion CT-QMC solver. The influence of Hunds exchange and spin-orbit coupling (SOC) on spectral properties of Ce were investigated. SOC is re sponsible for the shape of spectra near the Fermi level and Hunds exchange interaction doesnt change the obtained spectra and can be neglected.
Magnetism in transition-metal compounds (TMCs) has traditionally been associated with spin degrees of freedom, because the orbital magnetic moments are typically largely quenched. On the other hand, magnetic order in 4f- and 5d-electron systems arise s from spin and orbital moments that are rigidly tied together by the large intra-atomic spin-orbit coupling (SOC). Using inelastic neutron scattering on the archetypal 4d-electron Mott insulator Ca$_2$RuO$_4$, we report a novel form of excitonic magnetism in the intermediate-strength regime of the SOC. The magnetic order is characterized by ``soft magnetic moments with large amplitude fluctuations manifested by an intense, low-energy excitonic mode analogous to the Higgs mode in particle physics. This mode heralds a proximate quantum critical point separating the soft magnetic order driven by the superexchange interaction from a quantum-paramagnetic state driven by the SOC. We further show that this quantum critical point can be tuned by lattice distortions, and hence may be accessible in epitaxial thin-film structures. The unconventional spin-orbital-lattice dynamics in Ca$_2$RuO$_4$ identifies the SOC as a novel source of quantum criticality in TMCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا