ﻻ يوجد ملخص باللغة العربية
We report the discovery of thermal X-ray emission from the youngest Galactic supernova remnant G1.9+0.3, from a 237-ks Chandra observation. We detect strong K-shell lines of Si, S, Ar, Ca, and Fe. In addition, we detect a 4.1 keV line with 99.971% confidence which we attribute to 44Sc, produced by electron capture from 44Ti. Combining the data with our earlier Chandra observation allows us to detect the line in two regions independently. For a remnant age of 100 yr, our measured total line strength indicates synthesis of $(1 - 7) times 10^{-5}$ solar masses of 44Ti, in the range predicted for both Type Ia and core-collapse supernovae, but somewhat smaller than the $2 times 10^{-4}$ solar masses reported for Cas A. The line spectrum indicates supersolar abundances. The Fe emission has a width of about 28,000 km/s, consistent with an age of about 100 yr and with the inferred mean shock velocity of 14,000 km/s deduced assuming a distance of 8.5 kpc. Most thermal emission comes from regions of lower X-ray but higher radio surface brightness. Deeper observations should allow more detailed spatial mapping of scandium, with significant implications for models of nucleosynthesis in Type Ia supernovae.
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities larger t
We report measurements of X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60% along the
The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) SN Ia that exploded $sim 1900$ CE, is strongly asymmetric at radio wavelengths, much brighter in the north, but bilaterally symmetric in X-rays. We present the results o
Context. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of ~100 yrs and inferred shock sp
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR) and dominated by X-ray synchrotron emission. Synchrotron X-rays can be a useful tool to study the electron acceleration in young SNRs. The X-ray spectra of young SNRs give us information