ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase coexistence in congested states of pedestrian dynamics

116   0   0.0 ( 0 )
 نشر من قبل Armin Seyfried
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimental results for congested pedestrian traffic are presented. For data analysis we apply a method providing measurements on an individual scale. The resulting velocity-density relation shows a coexistence of moving and stopping states revealing the complex structure of pedestrian fundamental diagrams and supporting new insights into the characteristics of pedestrian congestions. Furthermore we introduce a model similar to event driven approaches. The velocity-density relation as well as the phase separation is reproduced. Variation of the parameter distribution indicates that the diversity of pedestrians is crucial for phase separation.



قيم البحث

اقرأ أيضاً

We propose a minimal off-lattice model of living organisms where just a very few dynamical rules of growth are assumed. The stable coexistence of many clusters is detected when we replace the global restriction rule by a locally applied one. A rich v ariety of evolving patterns is revealed where players movement has a decisive role on the evolutionary outcome. For example, intensive individual mobility may jeopardize the survival of the population, but if we increase players movement further then it can save the population. Notably, the collective drive of population members is capable to compensate the negative consequence of intensive movement and keeps the system alive. When the drive becomes biased then the resulting unidirectional flow alters the stable pattern and produce a stripe-like state instead of the previously observed hexagonal arrangement of clusters. Interestingly, the rotation of stripes can be flipped if the individual movement exceeds a threshold value.
The increasing number of mass events involving large crowds calls for a better understanding of the dynamics of dense crowds. Inquiring into the possibility of a mechanical description of these dynamics, we experimentally study the crossing of dense static crowds by a cylindrical intruder, a mechanical test which is classical for granular matter. The analysis of our experiments reveals robust features in the crowds response, comprising both similarities and discrepancies with the response of granular media. Common features include the presence of a depleted region behind the intruder and the short-range character of the perturbation. On the other hand, unlike grains, pedestrians anticipate the intruders passage by moving much before contact and their displacements are mostly lateral, hence not aligned with the forces exerted by the intruder. Similar conclusions are reached when the intruder is not a cylinder, but a single crossing pedestrian. Thus, our work shows that pedestrian interactions even at high densities (3 to 6 ped/m 2) do not reduce to mechanical ones. More generally, the avoidance strategies evidenced by our findings question the incautious use of force models for dense crowds.
Lane formation in bidirectional pedestrian streams is based on a stimulus-response mechanism and strategies of navigation in a fast-changing environment. Although microscopic models that only guarantee volume exclusion can qualitatively reproduce thi s phenomenon, they are not sufficient for a quantitative description. To quantitatively describe this phenomenon, a minimal anticipatory collision-free velocity model is introduced. Compared to the original velocity model, the new model reduces the occurrence of gridlocks and reproduces the movement of pedestrians more realistically. For a quantitative description of the phenomenon, the definition of an order parameter is used to describe the formation of lanes at transient states and to show that the proposed model compares relatively well with experimental data. Furthermore, the model is validated by the experimental fundamental diagrams of bidirectional flows.
Human languages evolve continuously, and a puzzling problem is how to reconcile the apparent robustness of most of the deep linguistic structures we use with the evidence that they undergo possibly slow, yet ceaseless, changes. Is the state in which we observe languages today closer to what would be a dynamical attractor with statistically stationary properties or rather closer to a non-steady state slowly evolving in time? Here we address this question in the framework of the emergence of shared linguistic categories in a population of individuals interacting through language games. The observed emerging asymptotic categorization, which has been previously tested - with success - against experimental data from human languages, corresponds to a metastable state where global shifts are always possible but progressively more unlikely and the response properties depend on the age of the system. This aging mechanism exhibits striking quantitative analogies to what is observed in the statistical mechanics of glassy systems. We argue that this can be a general scenario in language dynamics where shared linguistic conventions would not emerge as attractors, but rather as metastable states.
This paper describes an agent-based model of a finite group of agents in a single population who each choose which convention to advocate, and which convention to practice. Influences or dependencies in agents choice exists in the form of guru effect s and what others practice. With payoffs being dependent on cumulative rewards or actual standings in society, we illustrate the evolutionary dynamics of the phase structure of each group in the population via simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا