Collective atomic recoil motion in short-pulse multi-matter-optical wave mixing


الملخص بالإنكليزية

An analytical perturbation theory of short-pulse, matter-wave superradiant scatterings is presented. We show that Bragg resonant enhancement is incapacitated and both positive and negative order scatterings contribute equally. We further show that propagation gain is small and scattering events primarily occur at the end of the condensate where the generated field has maximum strength, thereby explaining the apparent ``asymmetry in the scattered components with respect to the condensate center. In addition, the generated field travels near the speed of light in a vacuum, resulting in significant spontaneous emission when the one-photon detuning is not sufficiently large. Finally, we show that when the excitation rate increases, the generated-field front-edge-steepening and peak forward-shifting effects are due to depletion of the ground state matter wave.

تحميل البحث