ترغب بنشر مسار تعليمي؟ اضغط هنا

Shintake Monitor in ATF2: Performance Evaluation

77   0   0.0 ( 0 )
 نشر من قبل Yohei Yamaguchi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The beam test for the Shintake monitor succeeded in measuring signal modulation with the laser interference fringe pattern in November 2009. We have studied the error sources, and evaluated the systematic error to be less than 30% for 1 minute measurements. This paper centers on the evaluation of the Shintake monitor performance through analyzing beam tests deta. Most systematic error sources are well understood, enabling accurate measurement of the beam size when it reaches 37 nm.



قيم البحث

اقرأ أيضاً

A beam size monitor so called Shintake monitor, which uses the inverse Compton scattering between the laser interference fringe and the electron beam was designed for and installed at ATF2. The commissioning at ATF2 was started in the end of 2008 and succeeded in the measurement of the fringe pattern from the scattered gamma-rays. The present status of the Shintake monitor is described here.
We developed an electron beam size monitor for extremely small beam sizes. It uses a laser interference fringe for a scattering target with the electron beam. Our target performance is < 2 nm systematic error for 37 nm beam size and < 10% statistical error in a measurement using 90 electron bunches for 25 - 6000 nm beam size. A precise laser interference fringe control system using an active feedback function is incorporated to the monitor to achieve the target performance. We describe an overall design, implementations, and performance estimations of the monitor.
The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam bac kground and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.
We are developing position sensitive silicon detectors (PSD) which have an electrode at each of four corners so that the incident position of a charged particle can be obtained using signals from the electrodes. It is expected that the position resol ution the electromagnetic calorimeter (ECAL) of the ILD detector will be improved by introducing PSD into the detection layers. In this study, we irradiated collimated laser beams to the surface of the PSD, varying the incident position. We found that the incident position can be well reconstructed from the signals if high resistance is implemented in the p+ layer. We also tried to observe the signal of particles by placing a radiative source on the PSD sensor.
338 - C. N. Booth 2012
The pion-production target that serves the MICE Muon Beam consists of a titanium cylinder that is dipped into the halo of the ISIS proton beam. The design and construction of the MICE target system are described along with the quality-assurance proce dures, electromagnetic drive and control systems, the readout electronics, and the data-acquisition system. The performance of the target is presented together with the particle rates delivered to the MICE Muon Beam. Finally, the beam loss in ISIS generated by the operation of the target is evaluated as a function of the particle rate, and the operating parameters of the target are derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا