ترغب بنشر مسار تعليمي؟ اضغط هنا

Selfconsistent descriptions of vector-mesons in hot matter revisited

141   0   0.0 ( 0 )
 نشر من قبل Felix Riek
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Technical concepts are presented that improve the selfconsistent treatment of vector-mesons in a hot and dense medium. First applications concern an interacting gas of pions and rho mesons. As an extension of earlier studies we thereby include RPA-type vertex corrections and further use dispersion relations in order to calculate the real part of the vector-meson selfenergy. An improved projection method preserves the four transversality of the vector-meson polarisation tensor throughout the selfconsistent calculations, thereby keeping the scheme void of kinematical singularities.



قيم البحث

اقرأ أيضاً

We investigate probing the hot and dense nuclear matter with strange vector mesons ($K^*, bar{K}^*$). Our analysis is based on PHSD which incorporates partonic and hadronic dof and describes the full dynamics of HICs. This allows to study the $K^*$ a nd $bar{K}^*$ meson formation from the QGP and the in-medium effects related to the modification of their properties during the propagation in dense and hot matter. We employ relativistic Breit-Wigner spectral functions for the $K^*,bar{K}^*$ mesons with self-energies obtained from a G-matrix approach to study the role of in-medium effects on the $K^*$ and $bar{K}^*$ meson dynamics in HIC from FAIR/NICA to LHC energies. According to our analysis most of the final $K^*/bar{K}^*$s, that can be observed experimentally, are produced during the late hadronic phase and stem dominantly from the $K (bar{K}) + pi to K^*(bar{K}^*)$ formation channel. The amount of $K^*/bar{K}^*$s originating from the QGP channel is comparatively small even at LHC energies and such $K^*/bar{K}^*$s can hardly be reconstructed experimentally due to the rescattering of final pions and (anti-)kaons. This mirrors the results from our previous study on the strange vector-meson production in HICs at RHIC energies. The influence of the in-medium effects on the dynamics of the $K^*/bar{K}^*$ is rather small since they are mostly produced at low baryon densities. Additional cuts on the shape of the observed signal and the range of the invariant mass region of the $K^*/bar{K}^*$ also affect the final spectra. We demonstrate that the $K^*/bar{K}^*$ in-medium effects are more visible at lower beam energy, e.g. FAIR/NICA and BES RHIC energies, where the production of $K^*/bar{K}^*$s occurs at larger baryon densities. Finally, we present the experimental procedures to extract information on the in-medium masses and widths by fitting final mass spectra at LHC energies.
156 - Floriana Giannuzzi 2012
We investigate vector meson spectral functions at finite temperature and density through the soft wall model, a bottom-up holographic approach to QCD. We find narrow resonances at small values of the parameters, becoming broader as temperature and de nsity increase. We study dissociation of such states, occurring when no peak can be distinguished in the spectral function. We also find a decreasing of the mass of vector mesons at increasing temperature and density. Finally, a discussion of these results is presented.
257 - P. Kroll 2008
It is reported on a global analysis of hard vector-meson electroproduction which is based on the handbag factorization. The generalized parton distributions are constructed from their forward limits with the help of double distributions and the parto nic subprocesses are calculated within the modified perturbative approach.
126 - T.M. Aliev , S. Bilmis , M. Savci 2019
The magnetic and quadrupole moments of the vector and axial-vector mesons containing heavy quark are estimated within the light cone sum rules method. Our predictions on magnetic moments for the vector mesons are compared with the results obtained by other approaches.
An important first step in the program of hadronization of chiral quark models is the bosonization in meson and diquark channels. This procedure is presented at finite temperatures and chemical potentials for the SU(2) flavor case of the NJL model wi th special emphasis on the mixing between scalar meson and scalar diquark modes which occurs in the 2SC color superconducting phase. The thermodynamic potential is obtained in the gaussian approximation for the meson and diquark fields and it is given the Beth-Uhlenbeck form. This allows a detailed discussion of bound state dissociation in hot, dense matter (Mott effect) in terms of the in-medium scattering phase shift of two-particle correlations. It is shown for the case without meson-diquark mixing that the phase shift can be separated into a continuum and a resonance part. In the latter, the Mott transition manifests itself by a change of the phase shift at threshold by pi in accordance with Levinsons theorem, when a bound state transforms to a resonance in the scattering continuum. The consequences for the contribution of pionic correlations to the pressure are discussed by evaluating the Beth-Uhlenbeck equation of state in different approximations. A similar discussion is performed for the scalar diquark channel in the normal phase. Further developments and applications of the developed approach are outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا