ترغب بنشر مسار تعليمي؟ اضغط هنا

The Temporal and Spectral Characteristics of Fast Rise and Exponential Decay Gamma-Ray Burst Pulses

138   0   0.0 ( 0 )
 نشر من قبل Zhaoyang Peng
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we have analyzed the temporal and spectral behavior of 52 Fast Rise and Exponential Decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in long-lag pulses. Different from these long-lag pulses only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least $sim$4 parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have correlated properties: (i) long-duration pulses have harder spectra and are less luminous than short-duration pulses; (ii) the more asymmetric the pulses are the steeper the evolutionary curves of the peak energy ($E_{p}$) in the $ u f_{ u}$ spectrum within pulse decay phase are. Our statistical results give some constrains on the current GRB models.



قيم البحث

اقرأ أيضاً

100 - Z. Y. Peng , L. Ma , R. J. Lu 2008
Employing a sample presented by Kaneko et al. (2006) and Kocevski et al. (2003), we select 42 individual tracking pulses (here we defined tracking as the cases in which the hardness follows the same pattern as the flux or count rate time profile) wit hin 36 Gamma-ray Bursts (GRBs) containing 527 time-resolved spectra and investigate the spectral hardness, $E_{peak}$ (where $E_{peak}$ is the maximum of the $ u F_{ u}$ spectrum), evolutionary characteristics. The evolution of these pulses follow soft-to-hard-to-soft (the phase of soft-to-hard and hard-to-soft are denoted by rise phase and decay phase, respectively) with time. It is found that the overall characteristics of $E_{peak}$ of our selected sample are: 1) the $E_{peak}$ evolution in the rise phase always start on the high state (the values of $E_{peak}$ are always higher than 50 keV); 2) the spectra of rise phase clearly start at higher energy (the median of $E_{peak}$ are about 300 keV), whereas the spectra of decay phase end at much lower energy (the median of $E_{peak}$ are about 200 keV); 3) the spectra of rise phase are harder than that of the decay phase and the duration of rise phase are much shorter than that of decay phase as well. In other words, for a complete pulse the initial $E_{peak}$ is higher than the final $E_{peak}$ and the duration of initial phase (rise phase) are much shorter than the final phase (decay phase). This results are in good agreement with the predictions of Lu et al. (2007) and current popular view on the production of GRBs. We argue that the spectral evolution of tracking pulses may be relate to both of kinematic and dynamic process even if we currently can not provide further evidences to distinguish which one is dominant. Moreover, our statistical results give some witnesses to constrain the current GRB model.
Relations linking the temporal or/and spectral properties of the prompt emission of gamma-ray bursts (hereafter GRBs) to the absolute luminosity are of great importance as they both constrain the radiation mechanisms and represent potential distance indicators. Here we discuss two such relations: the lag-luminosity relation and the newly discovered duration-luminosity relation of GRB pulses. We aim to extend our previous work on the origin of spectral lags, using the duration-luminosity relation recently discovered by Hakkila et al. to connect lags and luminosity. We also present a way to test this relation which has originally been established with a limited sample of only 12 pulses. We relate lags to the spectral evolution and shape of the pulses with a linear expansion of the pulse properties around maximum. We then couple this first result to the duration-luminosity relation to obtain the lag-luminosity and lag-duration relations. We finally use a Monte-Carlo method to generate a population of synthetic GRB pulses which is then used to check the validity of the duration-luminosity relation. Our theoretical results for the lag and duration-luminosity relations are in good agreement with the data. They are rather insensitive to the assumptions regarding the burst spectral parameters. Our Monte Carlo analysis of a population of synthetic pulses confirms that the duration-luminosity relation must be satisfied to reproduce the observational duration-peak flux diagram of BATSE GRB pulses. The newly discovered duration-luminosity relation offers the possibility to link all three quantities: lag, duration and luminosity of GRB pulses in a consistent way. Some evidence for its validity have been presented but its origin is not easy to explain in the context of the internal shock model.
This paper presents a study on the spectral evolution of gamma-ray burst (GRB) prompt emissions observed with the Suzaku Wide-band All-sky Monitor (WAM). By making use of the WAM data archive, 6 bright GRBs exhibiting 7 well-separated fast-rise-expon ential-decay (FRED) shaped light curves are presented and the evaluated exponential decay time constants of the energy-resolved light curves from these FRED peak light curves are shown to indicate significant spectral evolution. The energy dependence of the time constants is well described with a power-law function tau(E) ~ E^gamma, where gamma ~ -(0.34 +/- 0.12) in average, although 5 FRED peaks show consistent value of gamma = -1/2 which is expected in synchrotron or inverse-Compton cooling models. In particular, 2 of the GRBs were located with accuracy sufficient to evaluate the time-resolved spectra with precise energy response matrices. Their behavior in spectral evolution suggests two different origins of emissions. In the case of GRB081224, the derived 1-s time-resolved spectra are well described by a blackbody radiation model with a power-law component. The derived behavior of cooling is consistent with that expected from radiative cooling or expansion of the emission region. On the other hand, the other 1-s time-resolved spectra from GRB100707A is well described by a Band GRB model as well as with the thermal model. Although relative poor statistics prevent us to conclude, the energy dependence in decaying light curve is consistent with that expected in the former emission mechanism model.
127 - Z. Y. Peng , L. Ma , X. H. Zhao 2009
Employing two samples containing of 56 and 59 well-separated FRED (fast rise and exponential decay) gamma-ray burst (GRB) pulses whose spectra are fitted by the Band spectrum and Compton model, respectively, we have investigated the evolutionary slop e of $E_{p}$ (where $E_{p}$ is the peak energy in the $ u F u$ spectrum) with time during the pulse decay phase. The bursts in the samples were observed by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory. We first test the $E_{p}$ evolutionary slope during the pulse decay phase predicted by Lu et al. (2007) based on the model of highly symmetric expanding fireballs in which the curvature effect of the expanding fireball surface is the key factor concerned. It is found that the evolutionary slopes are normally distributed for both samples and concentrated around the values of 0.73 and 0.76 for Band and Compton model, respectively, which is in good agreement with the theoretical expectation of Lu et al. (2007). However, the inconsistence with their results is that the intrinsic spectra of most of bursts may bear the Comptonized or thermal synchrotron spectrum, rather than the Band spectrum. The relationships between the evolutionary slope and the spectral parameters are also checked. We show the slope is correlated with $E_{p}$ of time-integrated spectra as well as the photon flux but anticorrelated with the lower energy index $alpha$. In addition, a correlation between the slope and the intrinsic $E_{p}$ derived by using the pseudo-redshift is also identified. The mechanisms of these correlations are unclear currently and the theoretical interpretations are required.
We present systematic spectral analyses of GRBs detected with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO) during its entire nine years of operation. This catalog contains two types of spectra ext racted from 2145 GRBs and fitted with five different spectral models resulting in a compendium of over 19000 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedures and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the BATSE Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا