ﻻ يوجد ملخص باللغة العربية
We investigate the entanglement properties of the Kondo spin chain when it is prepared in its ground state as well as its dynamics following a single bond quench. We show that a true measure of entanglement such as negativity enables to characterize the unique features of the gapless Kondo regime. We determine the spatial extent of the Kondo screening cloud and propose an ansatz for the ground state in the Kondo regime accessible to this spin chain; we also demonstrate that the impurity spin is indeed maximally entangled with the Kondo cloud. We exploit these features of the entanglement in the gapless Kondo regime to show that a single local quench at one end of a Kondo spin chain may always induce a fast and long lived oscillatory dynamics, which establishes a high quality entanglement between the individual spins at the opposite ends of the chain. This entanglement is a footprint of the presence of the Kondo cloud and may be engineered so as to attain - even for very large chains- a constant high value independent of the length; in addition, it is thermally robust. To better evidence the remarkable peculiarities of the Kondo regime, we carry a parallel analysis of the entanglement properties of the Kondo spin chain model in the gapped dimerised regime where these remarkable features are absent.
Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We
We investigate the performance of superconducting flux qubits for the adiabatic quantum simulation of long distance entanglement (LDE), namely a finite ground-state entanglement between the end spins of a quantum spin chain with open boundary conditi
Most quantum system with short-ranged interactions show a fast decay of entanglement with the distance. In this Letter, we focus on the peculiarity of some systems to distribute entanglement between distant parties. Even in realistic models, like the
We derive some entanglement properties of the ground states of two classes of quantum spin chains described by the Fredkin model, for half-integer spins, and the Motzkin model, for integer ones. Since the ground states of the two models are known ana
Long-range correlated errors can severely impact the performance of NISQ (noisy intermediate-scale quantum) devices, and fault-tolerant quantum computation. Characterizing these errors is important for improving the performance of these devices, via