ﻻ يوجد ملخص باللغة العربية
Directional detection of galactic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A dedicated acquisition electronics with auto triggering feature and a real time track reconstruction software have been developed within the framework of the MIMAC project of detector. This auto-triggered acquisition electronic uses embedded processing to reduce data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.
MiMac is a project of micro-TPC matrix of gaseous (He3, CF4) chambers for direct detection of non-baryonic dark matter. Measurement of both track and ionization energy will allow the electron-recoil discrimination, while access to the directionnality
Directional detection is a promising search strategy to discover galactic Dark Matter. We present a Bayesian analysis framework dedicated to Dark Matter phenomenology using directional detection. The interest of directional detection as a powerful to
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating genuine WIMP events from background ones. However, carrying out such a strategy requires both a precise measurement of the energy down to a few keV an
Directional detection is a promising Dark Matter search strategy. Indeed, WIMP-induced recoils present a direction dependence toward the Cygnus constellation, while background-induced recoils exhibit an isotropic distribution in the galactic rest fra
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of track