ﻻ يوجد ملخص باللغة العربية
We show that the black hole-bulge mass scaling relations observed from the local to the high-z Universe can be largely or even entirely explained by a non-causal origin, i.e. they do not imply the need for any physically coupled growth of black hole and bulge mass, for example through feedback by active galactic nuclei (AGN). Provided some physics for the absolute normalisation, the creation of the scaling relations can be fully explained by the hierarchical assembly of black hole and stellar mass through galaxy merging, from an initially uncorrelated distribution of BH and stellar masses in the early Universe. We show this with a suite of dark matter halo merger trees for which we make assumptions about (uncorrelated) black hole and stellar mass values at early cosmic times. We then follow the halos in the presence of global star formation and black hole accretion recipes that (i) work without any coupling of the two properties per individual galaxy and (ii) correctly reproduce the observed star formation and black hole accretion rate density in the Universe. With disk-to-bulge conversion in mergers included, our simulations even create the observed slope of ~1.1 for the M_BH-M_bulge-relations at z=0. This also implies that AGN feedback is not a required (though still a possible) ingredient in galaxy evolution. In light of this, other mechanisms that can be invoked to truncate star formation in massive galaxies are equally justified.
The sample of dwarf galaxies with measured central black hole masses $M$ and velocity dispersions $sigma$ has recently doubled, and gives a close fit to the extrapolation of the $M propto sigma$ relation for more massive galaxies. We argue that this
We present the results of the analysis of a sample of 17 low-luminosity (L_x < 1e42 erg/s), radio loud AGNs in massive galaxies. The sample is extracted from the SDSS database and it spans uniformly a wide range in optical [OIII] emission line and ra
We use numerical simulations to investigate, for the first time, the joint effect of feedback from supernovae (SNe) and active galactic nuclei (AGN) on the evolution of galaxy cluster X-ray scaling relations. Our simulations are drawn from the Millen
We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first su
We present black hole mass measurements from kinematic modeling of high-spatial resolution integral field spectroscopy of the inner regions of 9 nearby (ultra-)luminous infrared galaxies in a variety of merger stages. These observations were taken wi