ترغب بنشر مسار تعليمي؟ اضغط هنا

A deep radio survey of the AKARI North Ecliptic Pole Field - WSRT 20 cm Radio survey description, observations and data reduction

96   0   0.0 ( 0 )
 نشر من قبل Glenn White Prof
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Westerbork Radio Synthesis Telescope, WSRT, has been used to make a deep radio survey of an ~ 1.7 sq degree field coinciding with the AKARI North Ecliptic Pole Deep Field. The observations, data reduction and source count analysis are presented, along with a description of the overall scientific objectives. The survey consisted of 10 pointings, mosaiced with enough overlap to maintain a similar sensitivity across the central region that reached as low as 21 microJy per beam at 1.4 GHz. A catalogue containing 462 sources detected with a resolution of 17x15 is presented. The differential source counts calculated from the WSRT data have been compared with those from the shallow VLA-NEP survey of Kollgaard et al 1994, and show a pronounced excess for sources fainter than ~ 1 mJy, consistent with the presence of a population of star forming galaxies at sub-mJy flux levels. The AKARI North Ecliptic Pole Deep field is the focus of a major observing campaign conducted across the entire spectral region. The combination of these data sets, along with the deep nature of the radio observations will allow unique studies of a large range of topics including the redshift evolution of the luminosity function of radio sources, the clustering environment of radio galaxies, the nature of obscured radio-loud active galactic nuclei, and the radio/far-infrared correlation for distant galaxies. This catalogue provides the basic data set for a future series of paper dealing with source identifications, morphologies, and the associated properties of the identified radio sources.



قيم البحث

اقرأ أيضاً

The results of a deep 20 cm radio survey at 20 cm are reported of the AKARI Deep Field South (ADF-S) near the South Ecliptic Pole (SEP), using the Australia Telescope Compact Array telescope, ATCA. The survey has 1 sigma detection limits ranging from 18.7--50 microJy per beam over an area of ~1.1 sq degrees, and ~2.5 sq degrees to lower sensitivity. The observations, data reduction and source count analysis are presented, along with a description of the overall scientific objectives, and a catalogue containing 530 radio sources detected with a resolution of 6.2 x 4.9. The derived differential source counts show a pronounced excess of sources fainter than ~1 mJy, consistent with an emerging population of star forming galaxies. Cross-correlating the radio with AKARI sources and archival data we find 95 cross matches, with most galaxies having optical R-magnitudes in the range 18-24 mag, and 52 components lying within 1 of a radio position in at least one further catalogue (either IR or optical). We have reported redshifts for a sub-sample of our catalogue finding that they vary between galaxies in the local universe to those having redshifts of up to 0.825. Associating the radio sources with the Spitzer catalogue at 24 microns, we find 173 matches within one Spitzer pixel, of which a small sample of the identifications are clearly radio loud compared to the bulk of the galaxies. The radio luminosity plot and a colour-colour analysis suggest that the majority of the radio sources are in fact luminous star forming galaxies, rather than radio-loud AGN. There are additionally five cross matches between ASTE or BLAST submillimetre galaxies and radio sources from this survey, two of which are also detected at 90 microns, and 41 cross-matches with submillimetre sources detected in the Herschel HerMES survey Public Data release.
We present the J and H-band source catalog covering the AKARI North Ecliptic Pole field. Filling the gap between the optical data from other follow-up observations and mid-infrared (MIR) data from AKARI, our near-infrared (NIR) data provides contiguo us wavelength coverage from optical to MIR. For the J and H-band imaging, we used the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer (FLAMINGOS) on the Kitt Peak National Observatory 2.1m telescope covering a 5.1 deg2 area down to a 5 sigma depth of ~21.6 mag and ~21.3 mag (AB) for J and H-band with an astrometric accuracy of 0.14 and 0.17 for 1 sigma in R.A. and Decl. directions, respectively. We detected 208,020 sources for J-band and 203,832 sources for H-band. This NIR data is being used for studies including analysis of the physical properties of infrared sources such as stellar mass and photometric redshifts, and will be a valuable dataset for various future missions.
A detailed analysis of Herschel-PACS observations at the North Ecliptic Pole is presented. High quality maps, covering an area of 0.44 square degrees, are produced and then used to derive potential candidate source lists. A rigorous quality control p ipeline has been used to create final legacy catalogues in the PACS Green 100 micron and Red 160 micron bands, containing 1384 and 630 sources respectively. These catalogues reach to more than twice the depth of the current archival Herschel/PACS Point Source Catalogue, detecting 400 and 270 more sources in the short and long wavelength bands respectively. Galaxy source counts are constructed that extend down to flux densities of 6mJy and 19mJy (50% completeness) in the Green 100 micron and Red 160 micron bands respectively. These source counts are consistent with previously published PACS number counts in other fields across the sky. The source counts are then compared with a galaxy evolution model identifying a population of luminous infrared galaxies as responsible for the bulk of the galaxy evolution over the flux range (5-100mJy) spanned by the observed counts, contributing approximate fractions of 50% and 60% to the cosmic infrared background (CIRB) at 100 microns and 160 microns respectively.
99 - H.Matsuhara , T. Wada , N. Oi 2017
The recent updates of the North Ecliptic Pole deep (0.5~deg$^2$, NEP-Deep) multi-wavelength survey covering from X-ray to radio-wave is presented. The NEP-Deep provides us with several thousands of 15~$mu$m or 18~$mu$m selected sample of galaxies, wh ich is the largest sample ever made at this wavelengths. A continuous filter coverage in the mid-infrared wavelength (7, 9, 11, 15, 18, and 24~$mu$m) is unique and vital to diagnose the contributions from starbursts and AGNs in the galaxies out to $z$=2.The new goal of the project is to resolve the nature of the cosmic star formation history at the violent epoch (e.g. $z$=1--2), and to find a clue to understand its decline from $z$=1 to present universe by utilizing the unique power of the multi-wavelength survey. The progress in this context is briefly mentioned.
225 - K. Murata , C.P. Pearson , T. Goto 2014
We present herein galaxy number counts of the nine bands in the 2-24 micron range on the basis of the AKARI North Ecliptic Pole (NEP) surveys. The number counts are derived from NEP-deep and NEP-wide surveys, which cover areas of 0.5 and 5.8 deg2, re spectively. To produce reliable number counts, the sources were extracted from recently updated images. Completeness and difference between observed and intrinsic magnitudes were corrected by Monte Carlo simulation. Stellar counts were subtracted by using the stellar fraction estimated from optical data. The resultant source counts are given down to the 80% completeness limit; 0.18, 0.16, 0.10, 0.05, 0.06, 0.10, 0.15, 0.16, and 0.44 mJy in the 2.4, 3.2, 4.1, 7, 9, 11, 15, 18 and 24 um bands, respectively. On the bright side of all bands, the count distribution is flat, consistent with the Euclidean Universe, while on the faint side, the counts deviate, suggesting that the galaxy population of the distant universe is evolving. These results are generally consistent with previous galaxy counts in similar wavebands. We also compare our counts with evolutionary models and find them in good agreements. By integrating the models down to the 80% completeness limits, we calculate that the AKARI NEP-survey revolves 20%-50% of the cosmic infrared background, depending on the wavebands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا