The central theme of this thesis is noncommutativity in string theory. We explore in detail how noncommutative structures can emerge in case of the interacting bosonic string and even in the fermionic sector of superstring theory. We have shown in various approaches that string coordinates must be noncommutative in order to be compatible with boundary conditions. These noncommutative structures lead to new involutive algebra of constraints but generate same Virasoro algebra, indicating the internal consistency of our analysis