ﻻ يوجد ملخص باللغة العربية
We study the ferromagnetic phase transition in a randomly layered Heisenberg model. A recent strong-disorder renormalization group approach [Phys. Rev. B 81, 144407 (2010)] predicted that the critical point in this system is of exotic infinite-randomness type and is accompanied by strong power-law Griffiths singularities. Here, we report results of Monte-Carlo simulations that provide numerical evidence in support of these predictions. Specifically, we investigate the finite-size scaling behavior of the magnetic susceptibility which is characterized by a non-universal power-law divergence in the Griffiths phase. In addition, we calculate the time autocorrelation function of the spins. It features a very slow decay in the Griffiths phase, following a non-universal power law in time.
We consider magnon excitations in the spin-glass phase of geometrically frustrated antiferromagnets with weak exchange disorder, focussing on the nearest-neighbour pyrochlore-lattice Heisenberg model at large spin. The low-energy degrees of freedom i
We study the effects of bond and site disorder in the classical $J_{1}$-$J_{2}$ Heisenberg model on a square lattice in the order-by-disorder frustrated regime $2J_{2}>left|J_{1}right|$. Combining symmetry arguments, numerical energy minimization and
A projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does no
Due to high viscosity, glassy systems evolve slowly to the ordered state. Results of molecular dynamics simulation reveal that the structural ordering in glasses becomes observable over experimental (finite) time-scale for the range of phase diagram
We present data on the magnetic properties of two classes of layered spin S=1/2 antiferromagnetic quasi-triangular lattice materials: $Cu_{2(1-x)}Zn_{2x}(OH)_3NO_3$ ($0 < x < 0.65$) and its long chain organic derivatives $Cu_{2(1-x)}Zn_{2x}(OH)_3(C_7