ﻻ يوجد ملخص باللغة العربية
By combining Herschel-SPIRE data with archival Spitzer, HI, and CO maps, we investigate the spatial distribution of gas and dust in the two famous grand-design spirals M99 and M100 in the Virgo cluster. Thanks to the unique resolution and sensitivity of the Herschel-SPIRE photometer, we are for the first time able to measure the distribution and extent of cool, submillimetre (submm)-emitting dust inside and beyond the optical radius. We compare this with the radial variation in both the gas mass and the metallicity. Although we adopt a model-independent, phenomenological approach, our analysis provides important insights. We find the dust extending to at least the optical radius of the galaxy and showing breaks in its radial profiles at similar positions as the stellar distribution. The colour indices f350/f500 and f250/f350 decrease radially consistent with the temperature decreasing with radius. We also find evidence of an increasing gas to dust ratio with radius in the outer regions of both galaxies.
With appropriate spatial resolution, images of spiral galaxies in thermal infrared (~10 micron and beyond) often reveal a bright central component, distinct from the stellar bulge, superimposed on a disk with prominent spiral arms. ISO and Spitzer st
We present a detailed analysis of the radial distribution of dust properties in the SINGS sample, performed on a set of UV, IR and HI surface brightness profiles, combined with published molecular gas profiles and metallicity gradients. The internal
We present ultraviolet through far-infrared surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes GALEX UV data, optical images from KPNO, CTIO and SD
(Abridged) We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey, using extinction-corrected UV, optical and near-infrared radial profiles to probe the emission of stars of different ages as a function of radiu
The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. This study is performed by exploiting th