ترغب بنشر مسار تعليمي؟ اضغط هنا

The H$alpha$ line forming region of AB Aur spatially resolved at sub-AU with the VEGA/CHARA spectro-interferometer

169   0   0.0 ( 0 )
 نشر من قبل Karine Perraut
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A crucial issue in star formation is to understand the physical mechanism by which mass is accreted onto and ejected by a young star. The visible spectrometer VEGA on the CHARA array can be an efficient means of probing the structure and the kinematics of the hot circumstellar gas at sub-AU. For the first time, we observed the Herbig Ae star AB Aur in the H$alpha$ emission line, using the VEGA low spectral resolution on two baselines of the array. We computed and calibrated the spectral visibilities between 610 nm and 700 nm. To simultaneously reproduce the line profile and the visibility, we used a 1-D radiative transfer code that calculates level populations for hydrogen atoms in a spherical geometry and synthetic spectro-interferometric observables. We clearly resolved AB Aur in the H$alpha$ line and in a part of the continuum, even at the smallest baseline of 34 m. The small P-Cygni absorption feature is indicative of an outflow but could not be explained by a spherical stellar wind model. Instead, it favors a magneto-centrifugal X-disk or disk-wind geometry. The fit of the spectral visibilities could not be accounted for by a wind alone, so we considered a brightness asymmetry possibly caused by large-scale nebulosity or by the known spiral structures, inducing a visibility modulation around H$alpha$. Thanks to the unique capabilities of VEGA, we managed to simultaneously record for the first time a spectrum at a resolution of 1700 and spectral visibilities in the visible range on a target as faint as $m_{V}$ = 7.1. It was possible to rule out a spherical geometry for the wind of AB Aur and provide realistic solutions to account for the H$alpha$ emission compatible with magneto-centrifugal acceleration. The study illustrates the advantages of optical interferometry and motivates observations of other bright young stars to shed light on the accretion/ejection processes.



قيم البحث

اقرأ أيضاً

255 - Olivier Chesneau 2010
BA-type supergiants are amongst the most optically-bright stars. They are observable in extragalactic environments, hence potential accurate distance indicators. Emission activity in the Halpha line of the BA supergiants Rigel (B8Ia) and Deneb (A2Ia) is indicative of presence of localized time-dependent mass ejections. Here, we employ optical interferometry to study the Halpha line-formation region in these stellar environments. High spatial- (0.001 arcsec) and spectral- (R=30 000) resolution observations of Halpha were obtained with the visible recombiner VEGA installed on the CHARA interferometer, using the S1S2 array-baseline (34m). Six independent observations were done on Deneb over the years 2008 and 2009, and two on Rigel in 2009. We analyze this dataset with the 1D non-LTE radiative-transfer code CMFGEN, and assess the impact of the wind on the visible and near-IR interferometric signatures, using both Balmer-line and continuum photons. We observe a visibility decrease in Halpha for both Rigel and Deneb, suggesting that the line-formation region is extended (1.5-1.75 R*). We observe a significant visibility decrease for Deneb in the SiII6371 line. We witness time variations in the differential phase for Deneb, implying an inhomogeneous and unsteady circumstellar environment, while no such variability is seen in differential visibilities. Radiative-transfer modeling of Deneb, with allowance for stellar-wind mass loss, accounts fairly well for the observed decrease in the Halpha visibility. Based on the observed differential visibilities, we estimate that the mass-loss rate of Deneb has changed by less than 5%.
274 - Daniel Bonneau 2010
We obtained spectro-interferometric observations in the visible of $beta$ Lyrae and $upsilon$ Sgr using the instrument VEGA of the CHARA interferometric array. For $beta$ Lyrae, the dispersed fringe visibilities and differential phases were obtained in spectral regions containing the H$alpha$ and HeI 6678 lines and the H$beta$ and HeI 4921 lines. Whereas the source is unresolved in the continuum, the source of the emission lines is resolved and the photocenter of the bulk of the H$alpha$ emission exhibits offsets correlated with the orbital phase. For $upsilon$ Sgr, both the continuum and H$alpha$ sources are resolved, but no clear binary signal is detected. The differential phase shift across the line reveals that the bulk of the H$alpha$ emission is clearly offset from the primary.
High-precision interferometric measurements of pulsating stars help to characterize their close environment. In 1974, a close companion was discovered around the pulsating star beta Cep using the speckle interferometry technique and features at the l imit of resolution (20 milli-arcsecond or mas) of the instrument were mentioned that may be due to circumstellar material. Beta Cep has a magnetic field that might be responsible for a spherical shell or ring-like structure around the star as described by the MHD models. Using the visible recombiner VEGA installed on the CHARA long-baseline interferometer at Mt. Wilson, we aim to determine the angular diameter of beta Cep and resolve its close environment with a spatial resolution up to 1 mas level. Medium spectral resolution (R=6000) observations of beta Cep were secured with the VEGA instrument over the years 2008 and 2009. These observations were performed with the S1S2 (30m) and W1W2 (100m) baselines of the array. We investigated several models to reproduce our observations. A large-scale structure of a few mas is clearly detected around the star with a typical flux relative contribution of 0.23 +- 0.02. Our best model is a co-rotational geometrical thin ring around the star as predicted by magnetically-confined wind shock models. The ring inner diameter is 8.2 +- 0.8 mas and the width is 0.6 +- 0.7 mas. The orientation of the rotation axis on the plane of the sky is PA = 60 +- 1 deg, while the best fit of the mean angular diameter of beta Cep gives UD[V] = 0.22 +- 0.05 mas. Our data are compatible with the predicted position of the close companion of beta Cep. These results bring additional constraints on the fundamental parameters and on the future MHD and asteroseismological models of the star.
The broadening of atomic emission lines by high-velocity motion of gas near accreting supermassive black holes is an observational hallmark of quasars. Observations of broad emission lines could potentially constrain the mechanism for transporting ga s inwards through accretion disks or outwards through winds. The size of this broad-line region has been estimated by measuring the light travel time delay between the variable nuclear continuum and the emission lines - a method known as reverberation mapping. In some models the emission lines arise from a continuous outflow, whereas in others they are produced by orbiting gas clouds. Directly imaging such regions has not hitherto been possible because of their small angular sizes (< 0.1 milli-arcseconds). Here we report a spatial offset (with a spatial resolution of ten micro-arcseconds or about 0.03 parsecs for a distance of 550 million parsecs) between the red and blue photo-centres of the broad Paschen-{alpha} line of the quasar 3C 273 perpendicular to the direction of its radio jet. This spatial offset corresponds to a gradient in the velocity of the gas and thus implies that the gas is orbiting the central supermassive black hole. The data are well fitted by a broad-line-region model of a thick disk of gravitationally bound material orbiting a black hole of 300 million solar masses. We infer a disk radius of 150 light days; a radius of 100-400 light days was found previously using reverberation mapping. The rotation axis of the disk aligns in inclination and position angle with the radio jet. Our results support the methods that are often used to estimate the masses of accreting supermassive black holes and to study their evolution over cosmic time.
Algol (Beta Per) is an extensively studied hierarchical triple system whose inner pair is a prototype semi-detached binary with mass transfer occurring from the sub-giant secondary to the main-sequence primary. We present here the results of our Algo l observations made between 2006 and 2010 at the CHARA interferometer with the Michigan Infrared Combiner in the H band. The use of four telescopes with long baselines allows us to achieve better than 0.5 mas resolution and to unambiguously resolve the three stars. The inner and outer orbital elements, as well as the angular sizes and mass ratios for the three components are determined independently from previous studies. We report a significantly improved orbit for the inner stellar pair with the consequence of a 15% change in the primary mass compared to previous studies. We also determine the mutual inclination of the orbits to be much closer to perpendicularity than previously established. State-of-the-art image reconstruction algorithms are used to image the full triple system. In particular an image sequence of 55 distinct phases of the inner pair orbit is reconstructed, clearly showing the Roche-lobe-filling secondary revolving around the primary, with several epochs corresponding to the primary and secondary eclipses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا