ﻻ يوجد ملخص باللغة العربية
We show that non-linear optical structures involving a balanced gain-loss profile, can act as unidirectional optical valves. This is made possible by exploiting the interplay between the fundamental symmetries of parity (P) and time (T), with optical nonlinear effects. This novel unidirectional dynamics is specifically demonstrated for the case of an integrable PT-symmetric nonlinear system.
Unidirectional reflectionless propagation (or transmission) is an interesting wave phenomenon observed in many $mathcal{PT}$-symmetric optical structures. Theoretical studies on unidirectional reflectionless transmission often use simple coupled-mode
In this work we first examine transverse and longitudinal fluxes in a $cal PT$-symmetric photonic dimer using a coupled-mode theory. Several surprising understandings are obtained from this perspective: The longitudinal flux shows that the $cal PT$ t
We reveal a generic connection between the effect of time-reversals and nonlinear wave dynamics in systems with parity-time (PT) symmetry, considering a symmetric optical coupler with balanced gain and loss where these effects can be readily observed
We report the spectral features of a phase-shifted parity and time ($mathcal{PT}$)-symmetric fiber Bragg grating (PPTFBG) and demonstrate its functionality as a demultiplexer in the unbroken $mathcal{PT}$-symmetric regime. The length of the proposed
We explore the consequences of incorporating parity and time reversal ($mathcal{PT}$) symmetries on the dynamics of nonreciprocal light propagation exhibited by a class of nonuniform periodic structures known as chirped $mathcal{PT}$-symmetric fiber