ﻻ يوجد ملخص باللغة العربية
We report neutron scattering studies on static magnetic orders and spin excitations in the Fe-based chalcogenide system Fe$_{1+delta}$Se$_{x}$Te$_{1-x}$ with different Fe and Se compositions. Short-range static magnetic order with the bicollinear spin configuration is found in all non-superconducting samples, with strong low-energy magnetic excitations near the $(0.5,0)$ in-plane wave-vector (using the two-Fe unit cell) for Se doping up to 45%. When the static order disappears and bulk superconductivity emerges, the spectral weight of the magnetic excitations shifts to the region of reciprocal space near the in-plane wave-vector $(0.5,0.5)$, corresponding to the collinear spin configuration. Our results suggest that spin fluctuations associated with the collinear magnetic structure appear to be universal in all Fe-based superconductors, and there is a strong correlation between superconductivity and the character of the magnetic order/fluctuations in
We present a systematic study of the nematic fluctuations in the iron chalcogenide superconductor Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ ($0 leq x leq 0.53$) using the elastoresistivity technique. Near $x = 0$, in proximity to the double-stripe magnetic order
We use bulk magnetic susceptibility, electronic specific heat, and neutron scattering to study structural and magnetic phase transitions in Fe$_{1+y}$Se% $_x$Te$_{1-x}$. Fe$_{1.068}$Te exhibits a first order phase transition near 67 K with a tetragon
The iron chalcogenide Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ on the Te-rich side is known to exhibit the strongest electron correlations among the Fe-based superconductors, and is non-superconducting for $x$ < 0.1. In order to understand the origin of such beh
The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in recent reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe$_{0.55}$Se$_{0.45}$. An associated puzzle is that the top
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide