ﻻ يوجد ملخص باللغة العربية
A nano-fabrication technique is presented which enables the fabrication of highly tunable devices on p-type, C-doped GaAs/AlGaAs heterostructures containing shallow two-dimensional hole systems. The high tunability of these structures is provided by the complementary electrostatic effects of intrinsic in-plane gates and evaporated metallic top-gates. Quantum point contacts fabricated with this technique were tested by electrical conductance spectroscopy.
A novel spin-spin coupling mechanism that occurs during the transport of spin-polarized minority electrons in semiconductors is described. Unlike the Coulomb spin drag, this coupling arises from the ambipolar electric field which is created by the di
Difficulties in obtaining high-performance p-type transistors and gate insulator charge-trapping effects present two major challenges for III-V complementary metal-oxide semiconductor (CMOS) electronics. We report a p-GaAs nanowire metal-semiconducto
Low-temperature electrical conductance spectroscopy measurements of quantum point contacts implemented in p-type GaAs/AlGaAs heterostructures are used to study the Zeeman splitting of 1D subbands for both in-plane and out-of-plane magnetic field orie
A quantum dot fabricated by scanning probe oxidation lithography on a p-type, C-doped GaAs/AlGaAs heterostructure is investigated by low temperature electrical conductance measurements. Clear Coulomb blockade oscillations are observed and analyzed in
Strong spin-orbit interaction characteristic for p-type GaAs systems, makes such systems promising for the realization of spintronic devices. Here we report on transport measurements in nanostructures fabricated on p-type, C-doped GaAs heterostructur