ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the evolving massive star population in Orion with kinematic and radioactive tracers

140   0   0.0 ( 0 )
 نشر من قبل Rasmus Voss
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We assemble a census of the most massive stars in Orion, then use stellar isochrones to estimate their masses and ages, and use these results to establish the stellar content of Orions individual OB associations. From this, our new population synthesis code is utilized to derive the history of the emission of UV radiation and kinetic energy of the material ejected by the massive stars, and also follow the ejection of the long-lived radioactive isotopes 26Al and 60Fe. In order to estimate the precision of our method, we compare and contrast three distinct representations of the massive stars. We compare the expected outputs with observations of 26Al gamma-ray signal and the extent of the Eridanus cavity. We find an integrated kinetic energy emitted by the massive stars of 1.8(+1.5-0.4)times 10^52 erg. This number is consistent with the energy thought to be required to create the Eridanus superbubble. We also find good agreement between our model and the observed 26Al signal, estimating a mass of 5.8(+2.7-2.5) times 10^-4 Msol of 26Al in the Orion region. Our population synthesis approach is demonstrated for the Orion region to reproduce three different kinds of observable outputs from massive stars in a consistent manner: Kinetic energy as manifested in ISM excavation, ionization as manifested in free-free emission, and nucleosynthesis ejecta as manifested in radioactivity gamma-rays. The good match between our model and the observables does not argue for considerable modifications of mass loss. If clumping effects turn out to be strong, other processes would need to be identified to compensate for their impact on massive-star outputs. Our population synthesis analysis jointly treats kinematic output and the return of radioactive isotopes, which proves a powerful extension of the methodology that constrains feedback from massive stars.



قيم البحث

اقرأ أيضاً

174 - R. Voss 2011
The mixing of ejecta from young stars into the interstellar medium is an important process in the interplay between star formation and galaxy evolution. A unique window into these processes is provided by the radioactive isotopes $^{26}$Al, traced by its $gamma$-ray decay lines at 1.8 MeV. With a mean lifetime of $sim$1 Myr it is a long-term tracer of nucleosynthesis for massive stars. Our population synthesis code models the ejection of $^{26}$Al, together with the $^{60}$Fe, the kinetic energy and UV radiation for a population of massive stars. We have applied the code to study the nearby Orion region and the more massive Carina region and found good agreement with observational constraints.
We propose a novel method to constrain turbulence and bulk motions in massive galaxies, groups and clusters, exploring both simulations and observations. As emerged in the recent picture of the top-down multiphase condensation, the hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (10^7 K) are perturbed by subsonic turbulence, warm (10^4 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (< 100 K) raining in the core via chaotic cold accretion (CCA). We show all phases are tightly linked via the ensemble (wide-aperture) velocity dispersion along the line of sight. The correlation arises in complementary long-term AGN feedback simulations and high-resolution CCA runs, and is corroborated by the combined Hitomi and new IFU measurements in Perseus cluster. The ensemble multiphase gas distributions are characterized by substantial spectral line broadening (100-200 km/s) with mild line shift. On the other hand, pencil-beam detections sample the small-scale clouds displaying smaller broadening and significant line shift up to several 100 km/s, with increased scatter due to the turbulence intermittency. We present new ensemble sigma_v of the warm Halpha+[NII] gas in 72 observed cluster/group cores: the constraints are consistent with the simulations and can be used as robust proxies for the turbulent velocities, in particular for the challenging hot plasma (otherwise requiring extremely long X-ray exposures). We show the physically motivated criterion C = t_cool/t_eddy ~ 1 best traces the condensation extent region and presence of multiphase gas in observed clusters/groups. The ensemble method can be applied to many available datasets and can substantially advance our understanding of multiphase halos in light of the next-generation multiwavelength missions.
We study the formation of massive Population III binary stars using a newly developed radiation hydrodynamics code with the adaptive mesh refinement and adaptive ray-tracing methods. We follow the evolution of a typical primordial star-forming cloud obtained from a cosmological hydrodynamics simulation. Several protostars form as a result of disk fragmentation and grow in mass by the gas accretion, which is finally quenched by the radiation feedback from the protostars. Our code enables us, for the first time, to consider the feedback by both the ionizing and dissociating radiation from the multiple protostars, which is essential for self-consistently determining their final masses. At the final step of the simulation, we observe a very wide ($gtrsim 10^4,mathrm{au}$) binary stellar system consisting of $60$ and $70,M_odot$ stars. One of the member stars also has two smaller mass ($10,M_odot$) companion stars orbiting at $200$ and $800,mathrm{au}$, making up a mini-triplet system. Our results suggest that massive binary or multiple systems are common among Population III stars.
We present a wide-field (~6x6) and deep near-infrared (Ks band: 2.14 micro m) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spa tially extended (~0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا