ﻻ يوجد ملخص باللغة العربية
The Herschel GASPS Key Program is a survey of the gas phase of protoplanetary discs, targeting 240 objects which cover a large range of ages, spectral types, and disc properties. To interpret this large quantity of data and initiate self-consistent analyses of the gas and dust properties of protoplanetary discs, we have combined the capabilities of the radiative transfer code MCFOST with the gas thermal balance and chemistry code ProDiMo to compute a grid of 300 000 disc models (DENT). We present a comparison of the first Herschel/GASPS line and continuum data with the predictions from the DENT grid of models. Our objective is to test some of the main trends already identified in the DENT grid, as well as to define better empirical diagnostics to estimate the total gas mass of protoplanetary discs. Photospheric UV radiation appears to be the dominant gas-heating mechanism for Herbig stars, whereas UV excess and/or X-rays emission dominates for T Tauri stars. The DENT grid reveals the complexity in the analysis of far-IR lines and the difficulty to invert these observations into physical quantities. The combination of Herschel line observations with continuum data and/or with rotational lines in the (sub-)millimetre regime, in particular CO lines, is required for a detailed characterisation of the physical and chemical properties of circumstellar discs.
Context - Circumstellar discs are ubiquitous around young stars, but rapidly dissipate their gas and dust on timescales of a few Myr. The Herschel space observatory allows for the study of the warm disc atmosphere, using far-infrared spectroscopy to
GASPS is a far-infrared line and continuum survey of protoplanetary and young debris disks using PACS on the Herschel Space Observatory. The survey includes [OI] at 63 microns, as well as 70, 100 and 160um continuum, with the brightest objects also s
Consistent modeling of protoplanetary disks requires the simultaneous solution of both continuum and line radiative transfer, heating/cooling balance between dust and gas and, of course, chemistry. Such models depend on panchromatic observations that
Most of the mass in protoplanetary disks is in the form of gas. The study of the gas and its diagnostics is of fundamental importance in order to achieve a detailed description of the thermal and chemical structure of the disk. The radiation from the
In an effort to simultaneously study the gas and dust components of the disc surrounding the young Herbig Ae star HD 169142, we present far-IR observations obtained with the PACS instrument onboard the Herschel Space Observatory. This work is part of