ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice Boltzmann Methods for thermal flows: continuum limit and applications to compressible Rayleigh-Taylor systems

164   0   0.0 ( 0 )
 نشر من قبل Andrea Scagliarini
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the continuum thermo-hydrodynamical limit of a new formulation of lattice kinetic equations for thermal compressible flows, recently proposed in [Sbragaglia et al., J. Fluid Mech. 628 299 (2009)]. We show that the hydrodynamical manifold is given by the correct compressible Fourier- Navier-Stokes equations for a perfect fluid. We validate the numerical algorithm by means of exact results for transition to convection in Rayleigh-Benard compressible systems and against direct comparison with finite-difference schemes. The method is stable and reliable up to temperature jumps between top and bottom walls of the order of 50% the averaged bulk temperature. We use this method to study Rayleigh-Taylor instability for compressible stratified flows and we determine the growth of the mixing layer at changing Atwood numbers up to At ~ 0.4. We highlight the role played by the adiabatic gradient in stopping the mixing layer growth in presence of high stratification and we quantify the asymmetric growth rate for spikes and bubbles for two dimensional Rayleigh- Taylor systems with resolution up to Lx times Lz = 1664 times 4400 and with Rayleigh numbers up to Ra ~ 2 times 10^10.



قيم البحث

اقرأ أيضاً

We present an improved lattice Boltzmann model for high-speed compressible flows. The model is composed of a discrete-velocity model by Kataoka and Tsutahara [Phys. Rev. E textbf{69}, 056702 (2004)] and an appropriate finite-difference scheme combine d with an additional dissipation term. With the dissipation term parameters in the model can be flexibly chosen so that the von Neumann stability condition is satisfied. The influence of the various model parameters on the numerical stability is analyzed and some reference values of parameter are suggested. The new scheme works for both subsonic and supersonic flows with a Mach number up to 30 (or higher), which is validated by well-known benchmark tests. Simulations on Riemann problems with very high ratios ($1000:1$) of pressure and density also show good accuracy and stability. Successful recovering of regular and double Mach shock reflections shows the potential application of the lattice Boltzmann model to fluid systems where non-equilibrium processes are intrinsic. The new scheme for stability can be easily extended to other lattice Boltzmann models.
We studied turbulence induced by the Rayleigh-Taylor (RT) instability for 2D immiscible two-component flows by using a multicomponent lattice Boltzmann method with a Shan-Chen pseudopotential implemented on GPUs. We compare our results with the exten sion to the 2D case of the phenomenological theory for immiscible 3D RT studied by Chertkov and collaborators ({it Physical Review E 71, 055301, 2005}). Furthermore, we compared the growth of the mixing layer, typical velocity, average density profiles and enstrophy with the equivalent case but for miscible two-component fluid. Both in the miscible and immiscible cases, the expected quadratic growth of the mixing layer and the linear growth of the typical velocity are observed with close long-time asymptotic prefactors but different initial transients. In the immiscible case, the enstrophy shows a tendency to grow like $propto t^{3/2}$, with the highest values of vorticity concentrated close to the interface. In addition, we investigate the evolution of the typical drop size and the behavior of the total length of the interface in the emulsion-like state, showing the existence of a power law behavior compatible with our phenomenological predictions. Our results can also be considered as a first validation step to extend the application of lattice Boltzmann tool to study the 3D immiscible case.
219 - Q. Li , Y. L. He , G. H. Tang 2009
In this brief report, a thermal lattice-Boltzmann (LB) model is presented for axisymmetric thermal flows in the incompressible limit. The model is based on the double-distribution-function LB method, which has attracted much attention since its emerg ence for its excellent numerical stability. Compared with the existing axisymmetric thermal LB models, the present model is simpler and retains the inherent features of the standard LB method. Numerical simulations are carried out for the thermally developing laminar flows in circular ducts and the natural convection in an annulus between two coaxial vertical cylinders. The Nusselt number obtained from the simulations agrees well with the analytical solutions and/or the results reported in previous studies.
135 - Ao Xu , Le Shi , Heng-Dong Xi 2019
We present numerical simulations of three-dimensional thermal convective flows in a cubic cell at high Rayleigh number using thermal lattice Boltzmann (LB) method. The thermal LB model is based on double distribution function approach, which consists of a D3Q19 model for the Navier-Stokes equations to simulate fluid flows and a D3Q7 model for the convection-diffusion equation to simulate heat transfer. Relaxation parameters are adjusted to achieve the isotropy of the fourth-order error term in the thermal LB model. Two types of thermal convective flows are considered: one is laminar thermal convection in side-heated convection cell, which is heated from one vertical side and cooled from the other vertical side; while the other is turbulent thermal convection in Rayleigh-Benard convection cell, which is heated from the bottom and cooled from the top. In side-heated convection cell, steady results of hydrodynamic quantities and Nusselt numbers are presented at Rayleigh numbers of $10^6$ and $10^7$, and Prandtl number of 0.71, where the mesh sizes are up to $257^3$; in Rayleigh-Benard convection cell, statistical averaged results of Reynolds and Nusselt numbers, as well as kinetic and thermal energy dissipation rates are presented at Rayleigh numbers of $10^6$, $3times 10^6$, and $10^7$, and Prandtl numbers of 0.7 and 7, where the nodes within thermal boundary layer are around 8. Compared with existing benchmark data obtained by other methods, the present LB model can give consistent results.
Rayleigh-Taylor (RT) instability widely exists in nature and engineering fields. How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value. At present, abundant results of RT instabilit y have been obtained by traditional macroscopic methods. However, research on the thermodynamic non-equilibrium (TNE) effects in the process of system evolution is relatively scarce. In this paper, the discrete Boltzmann method based on non-equilibrium statistical physics is utilized to study the effects of the specific heat ratio on compressible RT instability. The evolution process of the compressible RT system with different specific heat ratios can be analyzed by the temperature gradient and the proportion of the non-equilibrium region. Firstly, as a result of the competition between the macroscopic magnitude gradient and the non-equilibrium region, the average TNE intensity first increases and then reduces, and it increases with the specific heat ratio decreasing; the specific heat ratio has the same effect on the global strength of the viscous stress tensor. Secondly, the moment when the total temperature gradient in y direction deviates from the fixed value can be regarded as a physical criterion for judging the formation of the vortex structure. Thirdly, under the competition between the temperature gradients and the contact area of the two fluids, the average intensity of the non-equilibrium quantity related to the heat flux shows diversity, and the influence of the specific heat ratio is also quite remarkable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا