ﻻ يوجد ملخص باللغة العربية
Extremal scalar three-point correlators in the near-NHEK geometry of Kerr black holes have recently been shown to agree with the result expected from a holographically dual non-chiral two-dimensional conformal field theory. In this paper we extend this calculation to extremal three-point functions of scalars in a general Kerr black hole which need not obey the extremality condition $M=sqrt{J}$. It was recently argued that for low frequency scalars in the Kerr geometry there is a dual conformal field theory description which determines the interactions in this regime. Our results support this conjecture. Furthermore, we formulate a recipe for calculating finite-temperature retarded three-point correlation functions which is applicable to a large class of (even non-extremal) correlators, and discuss the vanishing of the extremal couplings.
Dynamics in the throat of rapidly rotating Kerr black holes is governed by an emergent near-horizon conformal symmetry. The throat contains unstable circular orbits at radii extending from the ISCO down to the light ring. We show that they are relate
Highly energetic particles traveling in the background of an asymptotically AdS black hole experience a Shapiro time delay and an angle deflection. These quantities are related to the Regge limit of a heavy-heavy-light-light four-point function of sc
We formulate two-dimensional rational conformal field theory as a natural generalization of two-dimensional lattice topological field theory. To this end we lift various structures from complex vector spaces to modular tensor categories. The central
The most general operator product expansion in conformal field theory is obtained using the embedding space formalism and a new uplift for general quasi-primary operators. The uplift introduced here, based on quasi-primary operators with spinor indic
Applying squashing transformation to Kerr-Godel black hole solutions, we present a new type of a rotating Kaluza-Klein black hole solution to the five-dimensional Einstein-Maxwell theory with a Chern-Simon term. The new solutions generated via the sq