ترغب بنشر مسار تعليمي؟ اضغط هنا

On the spectro-photometric properties of the bulk of the radio-loud AGN population

126   0   0.0 ( 0 )
 نشر من قبل Ranieri Diego Baldi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a previous paper we showed that the radio sources selected by combining large areas radio and optical surveys, present a strong deficit of radio emission with respect to 3CR radio-galaxies matched in line emission luminosity. We argued that the prevalence of sources with luminous extended radio structures in high flux limited samples is due to a selection bias. Sources with low radio power form the bulk of the radio-loud AGN population but are still virtually unexplored. We here analyze their photometric and spectroscopic properties. From the point of view of their emission lines, the majority of the sample are Low Excitation Galaxies (LEG), similar to the 3CR objects at the same level of line luminosity. The hosts of LEG are red, massive Early-Type Galaxies (ETG) with large black holes masses , statistically indistinguishable from the hosts of low redshift 3CR/LEG sources. No genuine radio-loud LEG could be found associated with black holes with a mass substantially lower than 10^8 M(sun) or with a late type host. The fraction of galaxies with signs of star formation (5%) is similar to what is found in both the quiescent ETG and 3CR/LEG hosts. We conclude that the deficit in radio emission cannot be ascribed to differences in the properties of their hosts. We argue that instead this could be due to a temporal evolution of the radio luminosity. A minority (10%) of the sample show rather different properties, being associated with low black hole masses, with spiral galaxies, or showing a high excitation spectrum. In general these outliers are the result of the contamination from Seyfert and from galaxies where the radio emission is powered by star formation. For the objects with high excitation spectra there is no a clear discontinuity in either the host or nuclear properties as they span from radio-quiet and radio-loud AGN.



قيم البحث

اقرأ أيضاً

We explore radio and spectroscopic properties of a sample of 14 miniature radio galaxies, i.e. early-type core galaxies hosting radio-loud AGN of extremely low radio power, 10^(27-29) erg s^(-1) Hz^(-1) at 1.4 GHz. Miniature radio galaxies smoothly e xtend the relationships found for the more powerful FRI radio galaxies between emission line, optical and radio nuclear luminosities to lower levels. However, they have a deficit of a factor of ~100 in extended radio emission with respect to that of the classical example of 3CR/FRI. This is not due to their low luminosity, since we found radio galaxies of higher radio core power, similar to those of 3CR/FRI, showing the same behavior, i.e. lacking significant extended radio emission. Such sources form the bulk of the population of radio-loud AGN in the Sloan Digital Sky Survey. At a given level of nuclear emission, one can find radio sources with an extremely wide range, a factor of >~100, of radio power. We argue that the prevalence of sources with luminous extended radio structures in flux limited samples is due to a selection bias, since the inclusion of such objects is highly favored. The most studied catalogues of radio galaxies are thus composed by the minority of radio-loud AGN that meet the physical conditions required to form extended radio sources, while the bulk of the population is virtually unexplored.
We present an analysis of four complete samples of radio-loud AGN (3CRR, 2Jy, 6CE and 7CE) using near- and mid-IR data taken by the Wide-Field Infrared Survey Explorer (WISE). The combined sample consists of 79 quasars and 273 radio galaxies, and cov ers a redshift range 0.003<z<3.395. The dichotomy in the mid-IR properties of low- and high-excitation radio galaxies (LERGs - HERGs) is analysed for the first time using large complete samples. Our results demonstrate that a division in the accretion modes of LERGs and HERGs clearly stands out in the mid-IR-radio plane (L_(22 mu m) = 5x10^(43) erg s^(-1)). This means that WISE data can be effectively used to diagnose accretion modes in radio-loud AGN. The mid-IR properties of all objects were analysed to test the unification between quasars and radio galaxies, consistent with earlier work and we argue that smooth torus models best reproduce the observation. Quasars are found to have higher mid-IR luminosities than radio galaxies. We also studied all the sources in the near-IR to gain insights into evolution of AGN host galaxies. A relation found between the near-IR luminosity and redshift, well-known in the near-IR, is apparent in the two near-IR WISE bands, supporting the idea that radio sources are hosted by massive elliptical galaxies that formed their stars at high redshifts and evolved passively thereafter. Evaluation of the positions of the sample objects in WISE colour-colour diagrams shows that widely used WISE colour cuts are not completely reliable in selecting AGN.
We explore the connection between the black hole mass and its relativistic jet for a sample of radio-loud AGN (z < 1), in which the relativistic jet parameters are well estimated by means of long term monitoring with the 14m Metsahovi millimeter wave telescope and the Very Long Base-line Array (VLBA). NIR host galaxy images taken with the NOTCam on the Nordic Optical Telescope (NOT) and retrieved from the 2MASS all-sky survey allowed us to perform a detailed surface brightness decomposition of the host galaxies in our sample and to estimate reliable black hole masses via their bulge luminosities. We present early results on the correlations between black hole mass and the relativistic jet parameters. Our preliminary results suggest that the more massive the black hole is, the faster and the more luminous jet it produces.
We report spectral, imaging, and variability results from four new XMM-Newton observations and two new Chandra observations of high-redshift (z > 4) radio-loud quasars (RLQs). Our targets span lower, and more representative, values of radio loudness than those of past samples of high-redshift RLQs studied in the X-ray regime. Our spectral analyses show power-law X-ray continua with a mean photon index, Gamma =1.74 +/- 0.11, that is consistent with measurements of lower redshift RLQs. These continua are likely dominated by jet-linked X-ray emission, and they follow the expected anti-correlation between photon index and radio loudness. We find no evidence of iron Kalpha ~ emission lines or Compton-reflection continua. Our data also constrain intrinsic X-ray absorption in these RLQs. We find evidence for significant absorption (N_H ~ 10^22 cm^-2) in one RLQ of our sample (SDSS J0011+1446); the incidence of X-ray absorption in our sample appears plausibly consistent with that for high-redshift RLQs that have higher values of radio loudness. In the Chandra observation of PMN J221-2719 we detect apparent extended (~ 14 kpc) X-ray emission that is most likely due to a jet; the X-ray luminosity of this putative jet is ~2% that of the core. The analysis of a 4.9 GHz VLA image of PMN J221-2719 reveals a structure that matches the X-ray extension found in this source. We also find evidence for long-term (450-460 days) X-ray variability by 80-100% in two of our targets.
Only a small fraction of observed Active Galactic Nuclei display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting `remnant radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of LOFAR and the VLA, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices ($-1.5leqslant alpha^{1400}_{150}leqslant -0.5$), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا