ﻻ يوجد ملخص باللغة العربية
The goal of the Herschel Open Time Key programme TNOs are Cool! is to derive the physical and thermal properties for a large sample of Centaurs and trans-Neptunian objects (TNOs), including resonant, classical, detached and scattered disk objects. We present results for seven targets either observed in PACS point-source, or in mini scan-map mode. Spitzer-MIPS observations were included for three objects. The sizes of these targets range from 100 km to almost 1000 km, five have low geometric albedos below 10%, (145480) 2005 TB190 has a higher albedo above 15%. Classical thermal models driven by an intermediate beaming factor of $eta$=1.2 or $eta$-values adjusted to the observed colour temperature fit the multi-band observations well in most cases. More sophisticated thermophysical models give very similar diameter and albedo values for thermal inertias in the range 0-25 Jm-2s-0.5K-1, consistent with very low heat conductivities at temperatures far away from the Sun. The early experience with observing and model strategies will allow us to derive physical and thermal properties for our complete Herschel TNO sample of 140 targets as a benchmark for understanding the solar system debris disk, and extra-solar ones as well.
We present Herschel PACS photometry of 18 Plutinos and determine sizes and albedos for these objects using thermal modeling. We analyze our results for correlations, draw conclusions on the Plutino size distribution, and compare to earlier results. F
Thermal emission from Kuiper Belt object (136108) Haumea was measured with Herschel-PACS at 100 and 160 micrometers for almost a full rotation period. Observations clearly indicate a 100-micrometer thermal lightcurve with an amplitude of a factor of
The classical Kuiper belt contains objects both from a low-inclination, presumably primordial, distribution and from a high-inclination dynamically excited population. Based on a sample of classical TNOs with observations at thermal wavelengths we de
A group of trans-Neptunian objects (TNO) are dynamically related to the dwarf planet 136108 Haumea. Ten of them show strong indications of water ice on their surfaces, are assumed to have resulted from a collision, and are accepted as the only known
Trans-Neptunian objects (TNO) represent the leftovers of the formation of the Solar System. Their physical properties provide constraints to the models of formation and evolution of the various dynamical classes of objects in the outer Solar System.