ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper limit on the neutrino magnetic moment from three years of data from the GEMMA spectrometer

110   0   0.0 ( 0 )
 نشر من قبل Viatcheslav Egorov
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The result of the 3-year neutrino magnetic moment measurement at the Kalinin Nuclear Power Plant with the GEMMA spectrometer is presented. Antineutrino-electron scattering is investigated. A HPGe detector of 1.5 kg placed at a distance of 13.9 m from the centre of the 3 GW_th reactor core is used in the spectrometer. The antineutrino flux is 2.7x10^13 1/cm^2/s. The differential method is used to extract nu-e electromagnetic scattering events. The scattered electron spectra taken in 5184+6798 and 1853+1021 hours during the reactor ON and OFF periods respectively are compared. The upper limits for the neutrino magnetic moment with and without atomic ionization mechanism were found to be 5.0x10^-12 and 3.2x10^-11 Bohr magnetons at 90% CL, respectively.



قيم البحث

اقرأ أيضاً

The recent analysis of the normalization of reactor antineutrino data, the calibration data of solar neutrino experiments using gallium targets, and the results from the neutrino oscillation experiment MiniBooNE suggest the existence of a fourth ligh t neutrino mass state with a mass of O(eV), which contributes to the electron neutrino with a sizable mixing angle. Since we know from measurements of the width of the Z0 resonance that there are only three active neutrinos, a fourth neutrino should be sterile (i.e., interact only via gravity). The corresponding fourth neutrino mass state should be visible as an additional kink in beta-decay spectra. In this work the phase II data of the Mainz Neutrino Mass Experiment have been analyzed searching for a possible contribution of a fourth light neutrino mass state. No signature of such a fourth mass state has been found and limits on the mass and the mixing of this fourth mass states are derived.
The MUNU experiment was carried out at the Bugey nuclear power reactor. The aim was the study of electron antineutrino-electron elastic scattering at low energy. The recoil electrons were recorded in a gas time projection chamber, immersed in a tank filled with liquid scintillator serving as veto detector, suppressing in particular Compton electrons. The measured electron recoil spectrum is presented. Upper limits on the neutrino magnetic moment were derived and are discussed.
187 - E. W. Otten , C. Weinheimer 2009
The paper reviews recent experiments on tritium beta spectroscopy searching for the absolute value of the electron neutrino mass $m( u_e)$. By use of dedicated electrostatic filters with high acceptance and resolution, the uncertainty on the observab le $m^2( u_e)$ has been pushed down to about 3 eV$^2$. The new upper limit of the mass is $m( u_e) < 2$ eV at 95% C.L. In view of erroneous and unphysical mass results obtained by some earlier experiments in beta decay, particular attention is paid to systematic effects. The mass limit is discussed in the context of current neutrino research in particle- and astrophysics. A preview is given of the next generation of beta spectroscopy experiments currently under development and construction; they aim at lowering the $m^2( u_e)$-uncertainty by another factor of 100, reaching a sensitivity limit $m( u_e) < 0.2$ eV.
The long baseline between the Earth and the Sun makes solar neutrinos an excellent test beam for exploring possible neutrino decay. The signature of such decay would be an energy-dependent distortion of the traditional survival probability which can be fit for using well-developed and high precision analysis methods. Here a model including neutrino decay is fit to all three phases of $^8$B solar neutrino data taken by the Sudbury Neutrino Observatory. This fit constrains the lifetime of neutrino mass state $ u_2$ to be ${>8.08times10^{-5}}$ s/eV at $90%$ confidence. An analysis combining this SNO result with those from other solar neutrino experiments results in a combined limit for the lifetime of mass state $ u_2$ of ${>1.04times10^{-3}}$ s/eV at $99%$ confidence.
We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $Delta m^2_{32}=2.72^{+0.19}_{-0.20}times 10^{-3},mathrm{eV}^2$ and $sin^2theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا