ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of dark-bright soliton trains in superfluid-superfluid counterflow

136   0   0.0 ( 0 )
 نشر من قبل Peter Engels
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the first experimental observation of trains of dark-bright solitons generated by the counterflow. Our observations are theoretically interpreted by three-dimensional numerical simulations for the coupled Gross-Pitaevskii (GP) equations and the analysis of a jump in the two relatively flowing components densities. Counterflow induced modulational instability for this miscible system is identified as the central process in the dynamics.



قيم البحث

اقرأ أيضاً

In this work dark soliton collisions in a one-dimensional superfluid Fermi gas are studied across the BEC-BCS crossover by means of a recently developed finite-temperature effective field theory [S. N. Klimin, J. Tempere, G. Lombardi, J. T. Devreese, Eur. Phys. J. B 88, 122 (2015)] . The evolution of two counter-propagating solitons is simulated numerically based on the theorys nonlinear equation of motion for the pair field. The resulting collisions are observed to introduce a spatial shift into the trajectories of the solitons. The magnitude of this shift is calculated and studied in different conditions of temperature and spin-imbalance. When moving away from the BEC-regime, the collisions are found to become inelastic, emitting the lost energy in the form of small-amplitude density oscillations. This inelasticity is quantified and its behavior analyzed and compared to the results of other works. The dispersion relation of the density oscillations is calculated and is demonstrated to show a good agreement with the spectrum of collective excitations of the superfluid.
Matter-wave interference mechanisms in one-dimensional Bose-Einstein condensates that allow for the controlled generation of dark soliton trains upon choosing suitable box-type initial configurations are described. First, the direct scattering proble m for the defocusing nonlinear Schrodinger equation with nonzero boundary conditions and general box-type initial configurations is discussed, and expressions for the discrete spectrum corresponding to the dark soliton excitations generated by the dynamics are obtained. It is found that the size of the initial box directly affects the number, size and velocity of the solitons, while the initial phase determines the parity of the solutions. The analytical results are compared to those of numerical simulations of the Gross-Pitaevskii equation, both in the absence and in the presence of a harmonic trap. The numerical results bear out the analytical results with excellent agreement.
The recent experimental realization of Bose-Fermi superfluid mixtures of dilute ultracold atomic gases has opened new perspectives in the study of quantum many-body systems. Depending on the values of the scattering lengths and the amount of bosons a nd fermions, a uniform Bose-Fermi mixture is predicted to exhibit a fully mixed phase, a fully separated phase or, in addition, a purely fermionic phase coexisting with a mixed phase. The occurrence of this intermediate configuration has interesting consequences when the system is nonuniform. In this work we theoretically investigate the case of solitonic solutions of coupled Bogoliubov-de Gennes and Gross-Pitaevskii equations for the fermionic and bosonic components, respectively. We show that, in the partially separated phase, a dark soliton in Fermi superfluid is accompanied by a broad bosonic component in the soliton, forming a dark-bright soliton which keeps full spatial coherence.
248 - F. Chevy 2015
In this article, we calculate the friction between two counter-flowing bosonic and fermionic super-fluids. In the limit where the boson-boson and boson-fermion interactions can be treated within the mean-field approximation, we show that the force ca n be related to the dynamical structure factor of the fermionic component. Finally, we provide asymptotic expressions for weakly and strongly attractive fermions and show that the damping rate obeys simple scaling laws close to the critical velocity.
A study of bright matter-wave solitons of a cesium Bose-Einstein condensate (BEC) is presented. Production of a single soliton is demonstrated and dependence of soliton atom number on the interatomic interaction is investigated. Formation of soliton trains in the quasi one-dimensional confinement is shown. Additionally, fragmentation of a BEC has been observed outside confinement, in free space. In the end a double BEC production setup for studying soliton collisions is described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا