ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust, Ice and Gas in Time (DIGIT) Herschel program first results: A full PACS-SED scan of the gas line emission in protostar DK Cha

97   0   0.0 ( 0 )
 نشر من قبل Tim van Kempen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

DK Cha is an intermediate-mass star in transition from an embedded configuration to a star plus disk stage. We aim to study the composition and energetics of the circumstellar material during this pivotal stage. Using the Range Scan mode of PACS on the Herschel Space Observatory, we obtained a spectrum of DK Cha from 55 to 210 micron as part of the DIGIT Key Program. Almost 50 molecular and atomic lines were detected, many more than the 7 lines detected in ISO-LWS. Nearly the entire ladder of CO from J=14-13 to 38-37 (E_u/k = 4080 K), water from levels as excited as E_u/k = 843 K, and OH lines up to E_u/k = 290 K were detected. The continuum emission in our PACS SED scan matches the flux expected from a model consisting of a star, a surrounding disk of 0.03 Solar mass, and an envelope of a similar mass, supporting the suggestion that the object is emerging from its main accretion stage. Molecular, atomic, and ionic emission lines in the far-infrared reveal the outflows influence on the envelope. The inferred hot gas can be photon-heated, but some emission could be due to C-shocks in the walls of the outflow cavity.



قيم البحث

اقرأ أيضاً

We present far-infrared spectroscopic observations, taken with the Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory, of the protoplanetary disk around the pre-main-sequence star HD 100546. These observations are th e first within the DIGIT Herschel key program, which aims to follow the evolution of dust, ice, and gas from young stellar objects still embedded in their parental molecular cloud core, through the final pre-main-sequence phases when the circumstellar disks are dissipated. Our aim is to improve the constraints on temperature and chemical composition of the crystalline olivines in the disk of HD 100546 and to give an inventory of the gas lines present in its far-infrared spectrum. The 69 mum feature is analyzed in terms of position and shape to derive the dust temperature and composition. Furthermore, we detected 32 emission lines from five gaseous species and measured their line fluxes. The 69 mum emission comes either from dust grains with ~70 K at radii larger than 50 AU, as suggested by blackbody fitting, or it arises from ~200 K dust at ~13 AU, close to the midplane, as supported by radiative transfer models. We also conclude that the forsterite crystals have few defects and contain at most a few percent iron by mass. Forbidden line emission from [CII] at 157 mum and [OI] at 63 and 145 mum, most likely due to photodissociation by stellar photons, is detected. Furthermore, five H2O and several OH lines are detected. We also found high-J rotational transition lines of CO, with rotational temperatures of ~300 K for the transitions up to J=22-21 and T~800 K for higher transitions.
Gas plays a major role in the dynamical evolution of protoplanetary discs. Its coupling with the dust is the key to our understanding planetary formation. Studying the gas content is therefore a crucial step towards understanding protoplanetary discs evolution. Such a study can be made through spectroscopic observations of emission lines in the far-infrared, where some of the most important gas coolants emit, such as the [OI] 3P1-3 P2 transition at 63.18 microns. We aim at characterising the gas content of protoplanetary discs in the intermediate-aged Chamaeleon II (Cha II) star forming region. We also aim at characterising the gaseous detection fractions within this age range, which is an essential step tracing gas evolution with age in different star forming regions. We obtained Herschel-PACS line scan spectroscopic observations at 63 microns of 19 Cha II Class I and II stars. The observations were used to trace [OI] and o-H2O at 63 microns. The analysis of the spatial distribution of [OI], when extended, can be used to understand the origin of the emission. We have detected [OI] emission toward seven out of the nineteen systems observed, and o-H2O emission at 63.32 microns in just one of them, Sz 61. Cha II members show a correlation between [OI] line fluxes and the continuum at 70 microns, similar to what is observed in Taurus. We analyse the extended [OI] emission towards the star DK Cha and study its dynamical footprints in the PACS Integral Field Unit (IFU). We conclude that there is a high velocity component from a jet combined with a low velocity component with an origin that may be a combination of disc, envelope and wind emission. The stacking of spectra of objects not detected individually in [OI] leads to a marginal 2.6sigma detection that may indicate the presence of gas just below our detection limits for some, if not all, of them.
We report the detection of far-IR CO rotational emission from the prototypical Seyfert 2 galaxy NGC 1068. Using Herschel-PACS, we have detected 11 transitions in the J_upper=14-30 (E_upper/k_B = 580-2565 K) range, all of which are consistent with ari sing from within the central 10 (700 pc). The detected transitions are modeled as arising from 2 different components: a moderate excitation (ME) component close to the galaxy systemic velocity, and a high excitation (HE) component that is blueshifted by ~80 km s^{-1}. We employ a large velocity gradient (LVG) model and derive n_H2~10^{5.6} cm^{-3}, T_kin~170 K, and M_H2~10^{6.7} M_sun for the ME component, and n_H2~10^{6.4} cm^{-3}, T_kin~570 K, and M_H2~10^{5.6} M_sun for the HE component, although for both components the uncertainties in the density and mass are plus/minus (0.6-0.9) dex. We compare the CO line profiles with those of other molecular tracers observed at higher spatial and spectral resolution, and find that the ME transitions are consistent with these lines arising in the ~200 pc diameter ring of material traced by H_2 1-0 S(1) observations. The blueshift of the HE lines may also be consistent with the bluest regions of this H_2 ring, but a better kinematic match is found with a clump of infalling gas ~40 pc north of the AGN. We discuss the prospects of placing the HE component near the AGN, and conclude that while the moderate thermal pressure precludes an association with the ~1 pc radius H_2O maser disk, the HE component could potentially be located only a few parsecs more distant from the AGN, and might then provide the N_H~10^{25} cm^{-2} column obscuring the nuclear hard X-rays. Finally, we also report sensitive upper limits extending up to J_upper=50, which place constraints on a previous model prediction for the CO emission from the X-ray obscuring torus. [Abridged]
We report on the initial analysis of a Herschel/PACS full range spectrum of Neptune, covering the 51-220 micrometer range with a mean resolving power of ~ 3000, and complemented by a dedicated observation of CH4 at 120 micrometers. Numerous spectral features due to HD (R(0) and R(1)), H2O, CH4, and CO are present, but so far no new species have been found. Our results indicate that (i) Neptunes mean thermal profile is warmer by ~ 3 K than inferred from the Voyager radio-occultation; (ii) the D/H mixing ratio is (4.5+/-1) X 10**-5, confirming the enrichment of Neptune in deuterium over the protosolar value (~ 2.1 X 10**-5); (iii) the CH4 mixing ratio in the mid stratosphere is (1.5+/-0.2) X 10**-3, and CH4 appears to decrease in the lower stratosphere at a rate consistent with local saturation, in agreement with the scenario of CH4 stratospheric injection from Neptunes warm south polar region; (iv) the H2O stratospheric column is (2.1+/-0.5) X 10**14 cm-2 but its vertical distribution is still to be determined, so the H2O external flux remains uncertain by over an order of magnitude; and (v) the CO stratospheric abundance is about twice the tropospheric value, confirming the dual origin of CO suspected from ground-based millimeter/submillimeter observations.
We report Herschel/PACS photometric observations at 70 {mu}m and 160 {mu}m of LRLL54361 - a suspected binary protostar that exhibits periodic (P=25.34 days) flux variations at shorter wavelengths (3.6 {mu}m and 4.5 {mu}m) thought to be due to pulsed accretion caused by binary motion. The PACS observations show unprecedented flux variation at these far-infrared wavelengths that are well cor- related with the variations at shorter wavelengths. At 70 {mu}m the object increases its flux by a factor of six while at 160{mu}m the change is about a factor of two, consistent with the wavelength dependence seen in the far-infrared spectra. The source is marginally resolved at 70 {mu}m with varying FWHM. Deconvolved images of the sources show elongations exactly matching the outflow cavities traced by the scattered light observations. The spatial variations are anti-correlated with the flux variation indicating that a light echo is responsible for the changes in FWHM. The observed far-infrared flux variability indicates that the disk and en- velope of this source is periodically heated by the accretion pulses of the central source, and suggests that such long wavelength variability in general may provide a reasonable proxy for accretion variations in protostars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا