ﻻ يوجد ملخص باللغة العربية
We study a holographic model for the dark energy considered recently in the literature which postulates an energy density $rho sim R$, where $R$ is the Ricci scalar curvature. We obtain a cosmological scenario that comes from considering two non-interacting fluids along a reasonable Ansatz for the cosmic coincidence parameter. We adjust the involved parameters in the model according to the observational data and we show that the equation of state for the dark energy experience a cross through the -1 barrier. In addition, we find a disagreement in these parameters with respect to an approach from a scalar field theory.
A general covariant local field theory of the holographic dark energy model is presented. It turns out the low energy effective theory of the holographic dark energy is the massive gravity theory whose graviton has 3 polarisations, including one scal
Unified generalized Chaplygin gas models assuming an interaction between dark energy and dark matter fluids have been previously proposed. Following these ideas, we consider a particular relation between dark densities, which allows the possibility o
We present a model of holographic dark energy in which the Infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the Infrared cutoff, and consequently the holographic d
We investigate the possibility of phantom crossing in the dark energy sector and solution for the Hubble tension between early and late universe observations. We use robust combinations of different cosmological observations, namely the CMB, local me
We discuss the possibility to construct supergravity models with a single superfield describing inflation as well as the tiny cosmological constant $V sim 10^{{-120}}$. One could expect that the simplest way to do it is to study models with a supersy