ﻻ يوجد ملخص باللغة العربية
The epitaxial growth of germanium on silicon leads to the self-assembly of SiGe nanocrystals via a process that allows the size, composition and position of the nanocrystals to be controlled. This level of control, combined with an inherent compatibility with silicon technology, could prove useful in nanoelectronic applications. Here we report the confinement of holes in quantum-dot devices made by directly contacting individual SiGe nanocrystals with aluminium electrodes, and the production of hybrid superconductorsemiconductor devices, such as resonant supercurrent transistors, when the dot is strongly coupled to the electrodes. Charge transport measurements on weakly coupled quantum dots reveal discrete energy spectra, with the confined hole states displaying anisotropic gyromagnetic factors and strong spin-orbit coupling strength with pronounced gate-voltage and magnetic-field dependence.
Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. We report electrical measurements on InSb nanowires contacted with one normal (Au) and one supercond
We present a superconductor-semiconductor material system that is both scalable and monolithically integrated on a silicon substrate. It uses selective area growth of Al-InAs hybrid structures on a planar III-V buffer layer, grown directly on a high
Motivated by a recent experimental report[1] claiming the likely observation of the Majorana mode in a semiconductor-superconductor hybrid structure[2,3,4,5], we study theoretically the dependence of the zero bias conductance peak associated with the
Nonlocal quasiparticle transport in normal-superconductor-normal (NSN) hybrid structures probes sub-gap states in the proximity region and is especially attractive in the context of Majorana research. Conductance measurement provides only partial inf
Using Bogoliubov-de Gennes (BdG) equations we numerically calculate the disorder averaged density of states of disordered semiconductor nanowires driven into a putative topological p-wave superconducting phase by spin-orbit coupling, Zeeman spin spli