ﻻ يوجد ملخص باللغة العربية
We study the fractional quantum Hall effect at filling fractions 7/3 and 5/2 in the presence of the spin-orbit interaction, using the exact diagonalization method and the density matrix renormalization group (DMRG) method in a spherical geometry. Trial wave functions at these fillings are the Laughlin state and the Moore-Reed-Pfaffian state. The ground state excitation energy gaps and pair-correlation functions at fractional filling factor 7/3 and 5/2 in the second Landau level are calculated. We find that the spin-orbit interaction stabilizes the fractional quantum Hall states.
We present activation gap measurements of the fractional quantum Hall effect (FQHE) in the second Landau level. Signatures for 14 (5) distinct incompressible FQHE states are seen in a high (low) mobility sample with the enigmatic 5/2 even denominator
Specific heat has had an important role in the study of superfluidity and superconductivity, and could provide important information about the fractional quantum Hall effect as well. However, traditional measurements of the specific heat of a two-dim
For certain measurements, the Corbino geometry has a distinct advantage over the Hall and van der Pauw geometries, in that it provides a direct probe of the bulk 2DEG without complications due to edge effects. This may be important in enabling detect
We compute the effect of Landau-level-mixing on the effective two-body and three-body pseudopotentials for electrons in the lowest and second Landau levels. We find that the resulting effective three-body interaction is attractive in the lowest relat
We report an unexpected sharp peak in the temperature dependence of the magnetoresistance of the reentrant integer quantum Hall states in the second Landau level. This peak defines the onset temperature of these states. We find that in different spin