ترغب بنشر مسار تعليمي؟ اضغط هنا

Piezoelectricity in the dielectric component of nanoscale dielectric/ferroelectric superlattices

159   0   0.0 ( 0 )
 نشر من قبل Jiyoung Jo
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of the functional properties of complex oxide superlattices can be resolved using time-resolved synchrotron x-ray diffraction into contributions from the component layers making up the repeating unit. The CaTiO3 layers of a CaTiO3/BaTiO3 superlattice have a piezoelectric response to an applied electric field, consistent with a large continuous polarization throughout the superlattice. The overall piezoelectric coefficient at large strains, 54 pm/V, agrees with first-principles predictions in which a tetragonal symmetry is imposed on the superlattice by the SrTiO3 substrate.



قيم البحث

اقرأ أيضاً

The nanodomain pattern in ferroelectric/dielectric superlattices transforms to a uniform polarization state under above-bandgap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. The reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field. A Landau-Ginzburg-Devonshire model predicts changes in lattice parameter and a critical carrier concentration for the transformation.
108 - J. Liu , F. Li , Y. Zeng 2016
Ferroelectric relaxors are complex materials with distinct properties. The understanding of their dielectric susceptibility, which strongly depends on both temperature and probing frequency, have interested researchers for many years. Here we report a macroscopic and phenomenological approach based on statistical modeling to investigate and better understand how the dielectric response of a relaxor depends on temperature. Employing the Maxwell-Boltzmann distribution and considering temperature dependent dipolar orientational polarizability, we propose a minimum statistical model and specific equations to understand and fit numerical and experimental dielectric responses versus temperature. We show that the proposed formula can successfully fit the dielectric response of typical relaxors, including Ba(Zr,Ti)O$_{3}$, Pb(Zn$_{1/3}$Nb$_{2/3}$)$_{0.87}$Ti$_{0.13}$O$_{3}$, and Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-0.05Pb(Zr$_{0.53}$Ti$_{0.47}$)O$_{3}$, which demonstrates the general applicability of this approach.
Weakly coupled ferroelectric/dielectric superlattice thin film heterostructures exhibit complex nanoscale polarization configurations that arise from a balance of competing electrostatic, elastic, and domain-wall contributions to the free energy. A k ey feature of these configurations is that the polarization can locally have a significant component that is not along the thin-film surface normal direction, while maintaining zero net in-plane polarization. PbTiO3/SrTiO3 thin-film superlattice heterostructures on a conducting SrRuO3 bottom electrode on SrTiO3 have a room-temperature stripe nanodomain pattern with nanometer-scale lateral period. Ultrafast time-resolved x-ray free electron laser diffraction and scattering experiments reveal that above-bandgap optical pulses induce rapidly propagating acoustic pulses and a perturbation of the domain diffuse scattering intensity arising from the nanoscale stripe domain configuration. With 400 nm optical excitation, two separate acoustic pulses are observed: a high-amplitude pulse resulting from strong optical absorption in the bottom electrode and a weaker pulse arising from the depolarization field screening effect due to absorption directly within the superlattice. The picosecond scale variation of the nanodomain diffuse scattering intensity is consistent with a larger polarization change than would be expected due to the polarization-tetragonality coupling of uniformly polarized ferroelectrics. The polarization change is consistent instead with polarization rotation facilitated by the reorientation of the in-plane component of the polarization at the domain boundaries of the striped polarization structure. The complex steady-state configuration within these ferroelectric heterostructures leads to polarization rotation phenomena that have been previously available only through the selection of bulk crystal composition.
Recently, based on the phase-field modeling, it was predicted that Hf1-xZrxO2 (HZO) exhibits the morphotropic phase boundary (MPB) in its compositional phase diagram. Here, we investigate the effect of structural changes between tetragonal (t) and or thorhombic (o) phases on the ferroelectric and dielectric properties of HZO films to probe the existence of MPB region. The structural analysis show that by adjusting the ozone dosage during the atomic layer deposition process and annealing conditions, different ratios of t- to o-phases (f_(t/o) ) were achieved which consequently affect the ferroelectric and dielectric properties of the samples. Polarization versus electric field measurements show a remarkable increase in ferroelectric characteristics (Pr and Ec) of the sample that contains the minimum t-phase fraction (f_(t/o)~ 0.04). This sample shows the lowest dielectric constant compared to the other samples which is due to the formation of ferroelectric o-phase. The sample that contains the maximum f_(t/o)~ 0.41 demonstrates the highest dielectric response. By adjusting the f_(t/o), a large dielectric constant of ~ 55 is achieved. Our study reveals a direct relation between f_(t/o) and dielectric constant of HZO thin films which can be understood by considering the density of MPB region.
107 - S. Kamba , S. Veljko , M. Kempa 2004
New relaxor ferroelectric system has been synthesized. BLTN exhibits a smeared maximum of permittivity, characteristic of classic relaxor behaviour, with a peak shift from 185 K at 100 Hz to 300 K at 1 GHz. BNTN undergoes a first order ferroelectric phase transition at 389 K and BLNTN exhibits both a ferroelectric phase transition at 274 K and relaxor behaviour at higher temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا