ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the Chandra CCD Spectra of SNR 1987A: Probing the Reflected-Shock Picture

187   0   0.0 ( 0 )
 نشر من قبل Svetozar Zhekov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue to explore the validity of the reflected shock structure (RSS) picture in SNR 1987A that was proposed in our previous analyses of the X-ray emission from this object. We used an improved version of our RSS model in a global analysis of 14 CCD spectra from the monitoring program with Chandra. In the framework of the RSS picture, we are able to match both the expansion velocity curve deduced from the analysis of the X-ray images and light curve. Using a simplified analysis, we also show that the X-rays and the non-thermal radio emission may originate from the same shock structure (the blast wave). We believe that using the RSS model in the analysis of grating data from the Chandra monitoring program of SNR 1987A that cover a long enough time interval, will allow us to build a more realistic physical picture and model of SNR 1987A.



قيم البحث

اقرأ أيضاً

We present new (2004 July) G750L and G140L Space Telescope Imaging Spectrograph (STIS) data of the H-alpha and Ly-alpha emission from supernova remnant (SNR) 1987A. With the aid of earlier data, from Oct 1997 to Oct 2002, we track the local evolution of Ly-alpha emission and both the local and global evolution of H-alpha emission. In addition to emission which we can clearly attribute to the surface of the reverse shock, we also measure comparable emission, in both H-alpha and Ly-alpha, which appears to emerge from supernova debris interior to the surface. New observations taken through slits positioned slightly eastward and westward of a central slit show a departure from cylindrical symmetry in the H-alpha surface emission. Using a combination of old and new observations, we construct a light curve of the total H-alpha flux, F, from the reverse shock, which has increased by a factor ~ 4 over about 8 years. However, due to large systematic uncertainties, we are unable to discern between the two limiting behaviours of the flux - F ~ t (self-similar expansion) and F ~ t^5 (halting of the reverse shock). Such a determination is relevant to the question of whether the reverse shock emission will vanish in less than about 7 years (Smith et al. 2005). Future deep, low- or moderate-resolution spectra are essential for accomplishing this task.
Based on observations with the $Chandra$ X-ray Observatory, we present the latest spectral evolution of the X-ray remnant of SN 1987A (SNR 1987A). We present a high-resolution spectroscopic analysis using our new deep ($sim$312 ks) $Chandra$ HETG obs ervation taken in March 2018, as well as archival $Chandra$ gratings spectroscopic data taken in 2004, 2007, and 2011 with similarly deep exposures ($sim$170 - 350 ks). We perform detailed spectral model fits to quantify changing plasma conditions over the last 14 years. Recent changes in electron temperatures and volume emission measures suggest that the shocks moving through the inner ring have started interacting with less dense circumstellar material, probably beyond the inner ring. We find significant changes in the X-ray line flux ratios (among H- and He-like Si and Mg ions) in 2018, consistent with changes in the thermal conditions of the X-ray emitting plasma that we infer based on the broadband spectral analysis. Post-shock electron temperatures suggested by line flux ratios are in the range $sim$0.8 - 2.5 keV as of 2018. We do not yet observe any evidence of substantial abundance enhancement, suggesting that the X-ray emission component from the reverse-shocked metal-rich ejecta is not yet significant in the observed X-ray spectrum.
Updated imaging and photometric results from Chandra observations of SN 1987A, covering the last 16 years, are presented. We find that the 0.5-2 keV light curve has remained constant at ~8x10^-12 erg s^-1 cm^-2 since 9500 days, with the 3-8 keV light curve continuing to increase until at least 10000 days. The expansion rate of the ring is found to be energy dependent, such that after day 6000 the ring expands faster in the 2-10 keV band than it does at energies <2 keV. Images show a reversal of the east-west asymmetry between 7000 and 8000 days after the explosion. The latest images suggest the southeastern side of the equatorial ring is beginning to fade. Consistent with the latest optical and infrared results, our Chandra analysis indicates the blast wave is now leaving the dense equatorial ring, which marks the beginning of a major change in the evolutionary phase of the supernova remnant 1987A.
The aim of this paper is to try to explain the physical origin of the non-thermal electron distribution that is able to form the enhanced intensities of satellite lines in the X-ray line spectra observed during the impulsive phases of some solar flar es. Synthetic X-ray line spectra of the distributions composed of the distribution of shock reflected electrons and the background Maxwellian distribution are calculated in the approximation of non-Maxwellian ionization, recombination, excitation and de-excitation rates. The distribution of shock reflected electrons is determined analytically. We found that the distribution of electrons reflected at the nearly-perpendicular shock resembles, at its high-energy part, the so called n-distribution. Therefore it could be able to explain the enhanced intensities of Si XIId satellite lines. However, in the region immediately in front of the shock its effect is small because electrons in background Maxwellian plasma are much more numerous there. Therefore, we propose a model in which the shock reflected electrons propagate to regions with smaller densities and different temperatures. Combining the distribution of the shock-reflected electrons with the Maxwellian distribution having different densities and temperatures we found that spectra with enhanced intensities of the satellite lines are formed at low densities and temperatures of the background plasma when the combined distribution is very similar to the n-distribution also in its low-energy part. In these cases, the distribution of the shock-reflected electrons controls the intensity ratio of the allowed Si XIII and Si XIV lines to the Si XIId satellite lines. The high electron densities of the background plasma reduce the effect of shock-reflected electrons on the composed electron distribution function, which leads to the Maxwellian spectra.
224 - D. Dewey 2008
We have undertaken deep, high-resolution observations of SN 1987A at ~20 years after its explosion with the Chandra HETG and LETG spectrometers. Here we present the HETG X-ray spectra of SN 1987A having unprecedented spectral resolution and signal-to -noise in the 6 A to 20 A bandpass, which includes the H-like and He-like lines of Si, Mg, Ne, as well as O VIII lines and bright Fe XVII lines. In joint analysis with LETG data, we find that there has been a significant decrease from 2004 to 2007 in the average temperature of the highest temperature component of the shocked-plasma emission. Model fitting of the profiles of individual HETG lines yields bulk kinematic velocities of the higher-Z ions, Mg and Si, that are significantly lower than those inferred from the LETG 2004 observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا