ﻻ يوجد ملخص باللغة العربية
Performance tuning of Database Management Systems(DBMS) is both complex and challenging as it involves identifying and altering several key performance tuning parameters. The quality of tuning and the extent of performance enhancement achieved greatly depends on the skill and experience of the Database Administrator (DBA). As neural networks have the ability to adapt to dynamically changing inputs and also their ability to learn makes them ideal candidates for employing them for tuning purpose. In this paper, a novel tuning algorithm based on neural network estimated tuning parameters is presented. The key performance indicators are proactively monitored and fed as input to the Neural Network and the trained network estimates the suitable size of the buffer cache, shared pool and redo log buffer size. The tuner alters these tuning parameters using the estimated values using a rate change computing algorithm. The preliminary results show that the proposed method is effective in improving the query response time for a variety of workload types. .
Given a replicated database, a divergent design tunes the indexes in each replica differently in order to specialize it for a specific subset of the workload. This specialization brings significant performance gains compared to the common practice of
There is a large body of recent work applying machine learning (ML) techniques to query optimization and query performance prediction in relational database management systems (RDBMSs). However, these works typically ignore the effect of textit{intra
Microsofts internal big-data infrastructure is one of the largest in the world -- with over 300k machines running billions of tasks from over 0.6M daily jobs. Operating this infrastructure is a costly and complex endeavor, and efficiency is paramount
Databases in the past have helped businesses maintain and extract insights from their data. Today, it is common for a business to involve multiple independent, distrustful parties. This trend towards decentralization introduces a new and important re
This paper describes the LDL++ system and the research advances that have enabled its design and development. We begin by discussing the new nonmonotonic and nondeterministic constructs that extend the functionality of the LDL++ language, while prese