Detecting Security threats in the Router using Computational Intelligence


الملخص بالإنكليزية

nformation security is an issue of global concern. As the Internet is delivering great convenience and benefits to the modern society, the rapidly increasing connectivity and accessibility to the Internet is also posing a serious threat to security and privacy, to individuals, organizations, and nations alike. Finding effective ways to detect, prevent, and respond to intrusions and hacker attacks of networked computers and information systems. This paper presents a knowledge discovery frame work to detect DoS attacks at the boundary controllers (routers). The idea is to use machine learning approach to discover network features that can depict the state of the network connection. Using important network data (DoS relevant features), we have developed kernel machine based and soft computing detection mechanisms that achieve high detection accuracies. We also present our work of identifying DoS pertinent features and evaluating the applicability of these features in detecting novel DoS attacks. Architecture for detecting DoS attacks at the router is presented. We demonstrate that highly efficient and accurate signature based classifiers can be constructed by using important network features and machine learning techniques to detect DoS attacks at the boundary controllers.

تحميل البحث