ﻻ يوجد ملخص باللغة العربية
We investigate whether the lightest scalar mesons sigma and kappa have a large tetraquark component, as is strongly supported by many phenomenological studies. A search for possible light tetraquark states with J^PC=0^++ and I=0, 2, 1/2, 3/2 on the lattice is presented. We perform the two-flavor dynamical simulation with Chirally Improved quarks and the quenched simulation with overlap quarks, finding qualitative agreement between both results. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink, and we omit the disconnected contractions. The time-dependence of the eigenvalues at finite temporal extent of the lattice is explored also analytically. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0, 2*pi/L,... However, we find an additional light state in the I=0 and I=1/2 channels, which may be interpreted as the observed resonances sigma and kappa with a sizable tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states.
We study the light scalar mesons a_0(980) and kappa using N_f = 2+1+1 flavor lattice QCD. In order to probe the internal structure of these scalar mesons, and in particular to identify, whether a sizeable tetraquark component is present, we use a lar
In previous works we predicted the existence of a $bar b bar b u d$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$ using the static approximation for the $bar b$ quarks and neglecting heavy spin effects. Since the binding energy is of the same ord
Charmed tetraquarks $T_{cc}=(ccbar{u}bar{d})$ and $T_{cs}=(csbar{u}bar{d})$ are studied through the S-wave meson-meson interactions, $D$-$D$, $bar{K}$-$D$, $D$-$D^{*}$ and $bar{K}$-$D^{*}$, on the basis of the (2+1)-flavor lattice QCD simulations wit
We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 in the dynamical and the quenched lattice simulations using tetra
Motivated by multiple phenomenological considerations, we perform the first search for the existence of a $bar{b}bar{b}bb$ tetraquark bound state with a mass below the lowest non-interacting bottomonium-pair threshold using the first-principles latti