ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Electroweak Symmetry Breaking and Cold Electroweak Baryogenesis

124   0   0.0 ( 0 )
 نشر من قبل Anders Tranberg
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a model for delayed electroweak symmetry breaking that takes place in a cold Universe with T<<100 GeV and which proceeds by a fast quench rather than by a conventional, slow, phase transition. This is achieved by coupling the Standard Model Higgs to an additional scalar field. We show that the quench transition can be made fast enough for successful Cold Electroweak Baryogenesis, while leaving known electroweak physics unchanged.



قيم البحث

اقرأ أيضاً

144 - Anders Tranberg 2010
Using large scale real-time lattice simulations, we calculate the baryon asymmetry generated at a fast, cold electroweak symmetry breaking transition. CP-violation is provided by the leading effective bosonic term resulting from integrating out the f ermions in the Minimal Standard Model at zero temperature, and performing a covariant gradient expansion [1]. This is an extension of the work presented in [2]. The numerical implementation is described in detail, and we address issues specifically related to using this CP-violating term in the context of Cold Electroweak Baryogenesis. The results support the conclusion of [2], that Standard Model CP-violation may be able to reproduce the observed baryon asymmetry in the Universe in the context of Cold Electroweak Baryogenesis.
179 - T.W.B. Kibble 2015
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salams group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.
We review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. We emphasize the direct observation of the new interactions through high-energy scatterin g of vector bosons. We also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models. [Working group summary report from the Snowmass `96 summer study, to appear in the proceedings.]
We study a mechanism that generates the baryon asymmetry of the Universe during a tachyonic electroweak phase transition. We utilize as sole source of CP violation an operator that was recently obtained from the Standard Model by integrating out the quarks.
Conventional scenarios of electroweak (EW) baryogenesis are strongly constrained by experimental searches for CP violation beyond the SM. We propose an alternative scenario where the EW phase transition and baryogenesis occur at temperatures of the o rder of a new physics threshold $Lambda$ far above the Fermi scale, say, in the $100-1000$ TeV range. This way the needed new sources of CP-violation, together with possible associated flavor-violating effects, decouple from low energy observables. The key ingredient is a new CP- and flavor-conserving sector at the Fermi scale that ensures the EW symmetry remains broken and sphalerons suppressed at all temperatures below $Lambda$. We analyze a minimal incarnation based on a linear $O(N)$ model. We identify a specific large-$N$ limit where the effects of the new sector are vanishingly small at zero temperature while being significant at finite temperature. This crucially helps the construction of realistic models. A number of accidental factors, ultimately related to the size of the relevant SM couplings, force $N$ to be above $sim 100$. Such a large $N$ may seem bizarre, but it does affect the simplicity of the model and in fact it allows us to carry out a consistent re-summation of the leading contributions to the thermal effective potential. Extensions of the SM Higgs sector can be compatible with smaller values $Nsim 20-30$. Collider signatures are all parametrically suppressed by inverse powers of $N$ and may be challenging to probe, but present constraints from direct dark matter searches cannot be accommodated in the minimal model. We discuss various extensions that satisfy all current bounds. One of these involves a new gauge force confining at scales between $sim1$ GeV and the weak scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا