ترغب بنشر مسار تعليمي؟ اضغط هنا

Magic constraints on Gamma-ray emission from Cygnus X-3

114   0   0.0 ( 0 )
 نشر من قبل Roberta Zanin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cygnus X-3 is a microquasar consisting of an accreting compact object orbiting around a Wolf-Rayet star. It has been detected at radio frequencies and up to high-energy gamma rays (above 100 MeV). However, many models also predict a very high energy (VHE) emission (above hundreds of GeV) when the source displays relativistic persistent jets or transient ejections. Therefore, detecting such emission would improve the understanding of the jet physics. The imaging atmospheric Cherenkov telescope MAGIC observed Cygnus X-3 for about 70 hours between 2006 March and 2009 August in different X-ray/radio spectral states and also during a period of enhanced gamma-ray emission. MAGIC found no evidence for a VHE signal from the direction of the microquasar. An upper limit to the integral flux for energies higher than 250 GeV has been set to 2.2 x 10-12 photons cm-2 s-1 (95% confidence level). This is the best limit so far to the VHE emission from this source. The non-detection of a VHE signal during the period of activity in the high-energy band sheds light on the location of the possible VHE radiation favoring the emission from the innermost region of the jets, where absorption is significant. The current and future generations of Cherenkov telescopes may detect a signal under precise spectral conditions.



قيم البحث

اقرأ أيضاً

We present the AGILE-GRID monitoring of Cygnus X-3, during the period between November 2007 and July 2009. We report here the whole AGILE-GRID monitoring of Cygnus X-3 in the AGILE pointing mode data-taking, to confirm that the gamma-ray activity coi ncides with the same repetitive pattern of multiwavelength emission and to analyze in depth the overall gamma-ray spectrum by assuming both leptonic and hadronic scenarios. Seven intense gamma-ray events were detected in this period, with a typical event lasting one or two days. These durations are longer than the likely cooling times of the gamma-ray emitting particles, implying we see continuous acceleration rather than the result of an impulsive event such as the ejection of a single plasmoid which then cools as it propagates outwards. Cross-correlating the AGILE-GRID light curve with X-ray and radio monitoring data, we find that the main events of gamma-ray activity have been detected while the system was in soft spectral X-ray states (RXTE/ASM count rate > 3 counts/s), that coincide with local and often sharp minima of the hard X-ray flux (Swift/BAT count rate < 0.02 counts/cm^2/s), a few days before intense radio outbursts. [...] These gamma-ray events may thus reflect a sharp transition in the structure of the accretion disk and its corona, which leads to a rebirth of the microquasar jet and subsequent enhanced radio activity. [...] Finally, we examine leptonic and hadronic emission models for the gamma-ray events and find that both scenarios are valid. In the leptonic model - based on inverse Compton scatterings of mildly relativistic electrons on soft photons from the Wolf-Rayet companion star and from the accretion disk - the emitting particles may also contribute to the overall hard X-ray spectrum, possibly explaining the hard non-thermal power-law tail sometimes seen during special soft X-ray states in Cygnus X-3.
With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 20 11, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emission is also detected when Cygnus X-3 was weakly flaring in radio, right before transition to the radio quenched state. No Gamma rays are observed during the ~ one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger Gamma-ray emission, implying a connection to the accretion process, and also that the Gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.
The AGILE satellite detected several episodes of transient gamma-ray emission from Cygnus X-3. Cross-correlating the AGILE light curve with both X-ray and radio monitoring data, we found that the main events of gamma-ray activity were detected while the system was in soft spectral X-ray states, that coincide with local and often sharp minima of the hard X-ray flux, a few days before intense radio outbursts. This repetitive temporal coincidence between the gamma-ray transient emission and spectral state changes of the source turns out to be the spectral signature of high-energy activity from this microquasar. The gamma-ray differential spectrum of Cygnus X-3 (100 MeV - 3 GeV), which was obtained by averaging the data collected by AGILE during the gamma-ray events, is consistent with a power law of photon index {alpha} = 2.0 +/- 0.2. Finally, we examined leptonic and hadronic emission models for the gamma-ray activity and found that both scenarios are valid. In particular, in the leptonic model - based on inverse Compton scatterings of mildly relativistic electrons on soft photons from both the Wolf-Rayet companion star and the accretion disk - the emitting particles may also contribute to the overall hard X-ray spectrum, possibly explaining the hard non-thermal power-law tail seen during special soft X-ray states in Cygnus X-3.
Gamma-ray observations of microquasars at high and very-high energies can provide valuable information of the acceleration processes inside the jets, the jet-environment interaction and the disk-jet coupling. Two high-mass microquasars have been deep ly studied to shed light on these aspects: Cygnus X-1 and Cygnus X-3. Both systems display the canonical hard and soft X-ray spectral states of black hole transients, where the radiation is dominated by non-thermal emission from the corona and jets and by thermal emission from the disk, respectively. Here, we report on the detection of Cygnus X-1 above 60 MeV using 7.5 yr of Pass8 Fermi-LAT data, correlated with the hard X-ray state. A hint of orbital flux modulation was also found, as the source is only detected in phases around the compact object superior conjunction. We conclude that the high-energy gamma-ray emission from Cygnus X-1 is most likely associated with jets and its detection allow us to constrain the production site. Moreover, we include in the discussion the final results of a MAGIC long-term campaign on Cygnus X-1 that reaches almost 100 hr of observations at different X-ray states. On the other hand, during summer 2016, Cygnus X-3 underwent a flaring activity period in radio and high-energy gamma rays, similar to the one that led to its detection in the high-energy regime in 2009. MAGIC performed comprehensive follow-up observations for a total of about 70 hr. We discuss our results in a multi-wavelength context.
Starburst galaxies and star-forming active galactic nuclei (AGN) are among the candidate sources thought to contribute appreciably to the extragalactic gamma-ray and neutrino backgrounds. NGC 1068 is the brightest of the star-forming galaxies found t o emit gamma rays from 0.1 to 50 GeV. Precise measurements of the high-energy spectrum are crucial to study the particle accelerators and probe the dominant emission mechanisms. We have carried out 125 hours of observations of NGC 1068 with the MAGIC telescopes in order to search for gamma-ray emission in the very high energy band. We did not detect significant gamma-ray emission, and set upper limits at 95% confidence level to the gamma-ray flux above 200 GeV f<5.1x10^{-13} cm^{-2} s ^{-1} . This limit improves previous constraints by about an order of magnitude and allows us to put tight constraints on the theoretical models for the gamma-ray emission. By combining the MAGIC observations with the Fermi-LAT spectrum we limit the parameter space (spectral slope, maximum energy) of the cosmic ray protons predicted by hadronuclear models for the gamma-ray emission, while we find that a model postulating leptonic emission from a semi-relativistic jet is fully consistent with the limits. We provide predictions for IceCube detection of the neutrino signal foreseen in the hadronic scenario. We predict a maximal IceCube neutrino event rate of 0.07 yr^{-1}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا