ﻻ يوجد ملخص باللغة العربية
The operator fidelity is a measure of the information-theoretic distinguishability between perturbed and unperturbed evolutions. The response of this measure to the perturbation may be formulated in terms of the operator fidelity susceptibility (OFS), a quantity which has been used to investigate the parameter spaces of quantum systems in order to discriminate their regular and chaotic regimes. In this work we numerically study the OFS for a pair of non-linearly coupled two-dimensional harmonic oscillators, a model which is equivalent to that of a hydrogen atom in a uniform external magnetic field. We show how the two terms of the OFS, being linked to the main properties that differentiate regular from chaotic behavior, allow for the detection of this models transition between the two regimes. In addition, we find that the parameter interval where perturbation theory applies is delimited from above by a local minimum of one of the analyzed terms.
We introduce the operator fidelity and propose to use its susceptibility for characterizing the sensitivity of quantum systems to perturbations. Two typical models are addressed: one is the transverse Ising model exhibiting a quantum phase transition
The extension of the notion of quantum fidelity from the state-space level to the operator one can be used to study environment-induced decoherence. state-dependent operator fidelity sucepti- bility (OFS), the leading order term for slightly differen
Mean fidelity amplitude and parametric energy--energy correlations are calculated exactly for a regular system, which is subject to a chaotic random perturbation. It turns out that in this particular case under the average both quantities are identic
Continuous observation of a quantum system yields a measurement record that faithfully reproduces the classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in phase space but weak enough that quan
It is shown that by switching a specific time-dependent interaction between a harmonic oscillator and a transmission line (a waveguide, an optical fiber, etc.) the quantum state of the oscillator can be transferred into that of another oscillator cou